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Preface

The central theme of Introduction to Electric Circuits is the concept that electric circuits are part ofthe
basic fabric of modem technology. Given this theme, we endeavor to show how the analysis and
design of electric circuits are inseparably intertwined with the ability of the engineer to design
complex electronic, communication, computer, and control systems as well as consumer products.

APPROACH & ORGANIZATION

This book is designed for a one- to three-term course in electric circuits or linear circuit analysis and is
structured for maximum flexibility. The flowchart in Figure 1 demonstrates alternative chapter
organizations that can accommodate different course outlines without disrupting continuity.

The presentation is geared to readers who are being exposed to the basic concepts of electric
circuits for the first time, and the scope of the work is broad. Students should come to the course with
the basic knowledge of differential and integral calculus.

This book endeavors to prepare the reader to solve realistic problems involving electric circuits.
Thus, circuits are shown to be the results of real inventions and the answers to real needs in industry,
the office, and the home. Although the tools of electric circuit analysis may be partially abstract,
electric circuits are the building blocks of modem society. The analysis and design of electric circuits
are critical skills for all engineers.

WHAT'S NEW IN THE 8TH EDITION

Increased use of PSpice Kand MATLABH

Significantly more attention has been given to using PSpice and MATLAB to solve circuits problems. It
starts with two new appendixes, one introducing PSpice and the other introducing MATLAB. These
appendixes briefly describe the capabilities of the programs and illustrate the steps needed to get started
using them. Next, PSpice and MATLAB are used throughout the text to solve various circuit analysis and
design problems. For example, PSpice is used in Chapter 5 to find a Thevenin equivalent circuit and in
Chapter 15to represent circuit inputs and outputs as Fourier series. MATLAB is frequently used to obtain
plots of circuit inputs and outputs that help us see what our equations are telling us. MATLAB also helps
us with some long and tedious arithmetic. For example, in Chapter 10, MATLAB helps us do the



— - Preface

1

ELECTRIC
CIRCUIT
VARIABLES

Matrices,

Color Determinants
Code
A,
4
3
2
METHODS OF
RESISTIVE
CIRCUIT CIRCUITS ANALYsis oF W'
ELEMENTS RESISTIVE
CIRCUITS

Complex
Numbers

FIGURE 1 Flow chart showing alternative paths through the topics in this textbook.

complex arithmetic to analyze ac circuits and, in Chapter 14, MATLAB helps with the partial fraction
required to find inverse Laplace transforms.

Of course, there’s more to using PSpice and MATLAB than simply running the programs. We pay
particular attention to interpreting the output ofthese computer programs and checking itto make sure it is
correct. Frequently, this is done in the section called, “How Can We Check . .. ” included in every
chapter. For example, Section 8.9 shows how to interpret and check a PSpice transient response, and
Section 13.7 shows how to interpret and check a frequency response produced using MATLAB or PSpice.

Revisions to Improve Clarity

Chapter 15 covering the Laplace transform and the Fourier series and transform, Chapters 14 and 15,
have been largely rewritten, both to improve clarity of exposition and to significantly increase
coverage of MATLAB and PSpice. In addition, revisions have been made throughout the text to

improve clarity. Sometimes these revisions are small, involving sentences or paragraphs. Other, larger
revisions involve pages or even entire sections.

More Problems

The 8th edition contains 120 new problems, bringing the total number ofproblemsto more than 1,350. This
edition uses a variety of problem types and they range in difficulty from simple to challenging, including:
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Straightforward analysis problems.

Analysis of complicated circuits.
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Chapter

Optional flow

Simple design problems. (For example, given a circuit and the specified response, determine the

required RLC values.)

Compare and contrast, multipart problems that draw attention to similarities or differences between

two situations.



e MATLAB and PSpice problems.
Design problems. (Given some specifications, devise a circuit that satisfies those specifications.)

How Can We Check . .. ? (Verify that a solution is indeed correct.)

FEATURES RETAINED FROM PREVIOUS EDITIONS

Introduction

Each chapter begins with an introduction that motivates consideration of the material of that chapter.

Examples

Because this book is oriented toward providing expertise in problem solving, we have included more
than 260 illustrative examples. Also, each example has a title that directs the student to exactly what is
being illustrated in that particular example.

Various methods of solving problems are incorporated into select examples. These cases show
students that multiple methods can be used to derive similar solutions or, in some cases, that multiple
solutions can be correct. This helps students build the critical thinking skills necessary to discern the
best choice between multiple outcomes.

Design Examples, a Problem-Solving Method, and
"How Can We Check ..." Sections

Each chapter concludes with a design example that uses the methods of that chapter to solve a design
problem. A formal, five-step problem-solving method is introduced in Chapter 1and then used in each of
the design examples. An important step in the problem-solving method requires you to check your results
to verify that they are correct. Each chapter includes a section entitled ‘‘How Can We Check . . . ” that
illustrates how the kind of results obtained in that chapter can be checked to ensure correctness.

Key Equations and Formulas

You will find that key equations, formulas, and important notes have been called out in a shaded box to
help you pinpoint critical information.

Summarizing Tables and Figures

The procedures and methods developed in this text have been summarized in certain key tables
and hgures. Students will find these to be an important problem-solving resource.

Table 1.5-1. The passive convention.

* Figure 2.7-1 and Table 2.7-1. Dependent sources.

e Table 3.10-1. Series and parallel sources.

e Table 3.10-1. Series and parallel elements. Voltage and current division.

Figure 4.2-3. Node voltages versus element currents and voltages.



» Figure 4.5-4. Mesh currents versus element currents and voltages.

e Figures 5.4-3 and 5.4-4. Thevenin equivalent circuits.

¢ Figure 6.3-1. The ideal op amp.

» Figure 6.5-1. A catalog of popular op amp circuits.

» Table 7.8-1. Capacitors and inductors.

e Table 7.13-2. Series and parallel capacitors and inductors.

» Table 8.11-1. First-order circuits.

e Tables 9.13-1, 2, and 3. Second-order circuits.

e Table 10.6-1. AC circuits in the frequency domain (phasors and impedances).
e Table 10.8-1. Voltage and current division for AC circuits.

o Table 11.5-1. Power formulas for AC circuits.

e Tables 11.13-1 and 11.13-2. Coupled inductors and ideal transformers.
* Table 13.4-1. Resonant circuits.

e Tables 14.2-1 and 14.2-2. Laplace transform tables.

e Table 14.7-1. s-domain models of circuit elements.

e Table 15.4-1. Fourier series of selected periodic waveforms.

Introduction to Signal Processing

Signal processing is an important application of electric circuits. This book introduces signal
processing in two ways. First, two sections (Sections 6.6 and 7.9) describe methods to design electric
circuits that implement algebraic and differential equations. Second, numerous examples and
problems throughout this book illustrate signal processing. The input and output signals of an electric
circuit are explicitly identified in each of these examples and problems. These examples and problems
investigate the relationship between the input and output signals that is imposed by the circuit.

Interactive Examples and Exercises

Numerous examples throughout this book are labeled as interactive examples. This label indicates that
computerized versions of that example are available at the textbook’s companion site, www.wiley.
com/dorf. Figure 2 illustrates the relationship between the textbook example and the computerized
example available on the Web-Site. Figure 2a shows an example from Chapter 3. The problem
presented by the interactive example shown in Figure 2b is similar to the textbook example but
different in several ways:

e 1he values of the circuit parameters have been randomized.
e The independent and dependent sources may be reversed.

« The reference direction of the measured voltage may be reversed.

A different question is asked. Here, the student is asked to work the textbook problem backward,
using the measured voltage to determine the value of a circuit parameter.


http://www.wiley

Preface

®

Calculator

Show Answer

The voltmeter measures a voltage in volts.
What is the value of the resistance, R, in Q?

@)

Worked Examples

Calculator |

New Problem

Show Answer

The ammeter measures a current in amps. What
is the value of the current measured by the ammeter? 1 — =

(©

FIGURE 2 (a) The circuit considered Example 3.2-5. (b) A corresponding interactive example, (c) A corresponding
interactive exercise.

The interactive example poses a problem and then accepts and checks the user’s answer. Students are
provided with immediate feedback regarding the correctness of their work. The interactive example
chooses parameter values somewhat randomly, providing a seemingly endless supply of problems.
This pairing of a solution to a particular problem with an endless supply of similar problems is an
effective aid for learning about electric circuits.

The interactive exercise shown in Figure 2c considers a similar, but different, circuit. Like the
interactive example, the interactive exercise poses a problem and then accepts and checks the user’s
answer. Student learning is further supported by extensive help in the form of worked example
problems, available from within the interactive exercise, using the Worked Example button.

Variations of this problem are obtained using the New Problem button. We can peek at the
answer, using the Show Answer button. The interactive examples and exercises provide hundreds of

additional practice problems with countless variations, all with answers that are checked immediately
by the computer.
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SUPPLEMENTS AND WEB-SITE MATERIAL

The almost ubiquitous use of computers and the Web have provided an exciting opportunity to rethink
supplementary material. The supplements available have been greatly enhanced.

Book Companion Site

Additional student and instructor resources can be found on the John Wiley & Sons textbook
companion site at www.wiley.com/college/dorf.

Student

e Interactive Examples The interactive examples and exercises are powerful support resources for
students. They were created as tools to assist students in mastering skills and building their
confidence. The examples selected from the text and included on the Web give students options for
navigating through the problem. They can immediately request to see the solution or select a more
gradual approach to help. Then they can try their hand at a similar problem by simply electing to
change the values in the problem. By the time students attempt the homework, they have built the
confidence and skills to complete their assignments successfully. It’s a virtual homework helper.

« MATLAB Tutorial, by Gary Ybarra and Michael Gustafson of Duke University, builds upon the
MATLAB examples in the text. By providing these additional examples, the authors show how this
powerful tool is easily used in appropriate areas of introductory circuit analysis. Ten example
problems are created in HTML. M-files for the computer-based examples are available for
download on the Student Companion site.

« PowerPoints for note taking
 Historical information
e PSpicefor Linear Circuits, available for purchase

¢ WileyPLUS option

Instructor
¢ Solutions manual

¢ PowerPoint slides

»  WileyPLUS option

WileyPLUS

Pspice for Linear Circuits is a student supplement available for purchase. The PSpice for Linear
Circuits manual describes in careful detail how to incorporate this valuable tool in solving problems.
This manual emphasizes the need to verify the correctness of computer output. No example is finished
until the simulation results have been checked to ensure that they are correct.
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A circuit consists of electrical elements connected together. Engineers use electric circuits to solve
problems that are important to modem society. In particular:

1 Electric circuits are used in the generation, transmission, and consumption of electric power and
energy.

2. Electric circuits are used in the encoding, decoding, storage, retrieval, transmission, and
processing of information.

In this chapter, we will do the following:

< Represent the current and voltage of an electric circuit element, paying particular attention to the
reference direction of the current and to the reference direction or polarity of the voltage

» Calculate the power and energy supplied or received by a circuit element

e Use the passive convention to determine whether the product of the current and voltage of a
circuit element is the power supplied by that element or the power received by the element

« Use scientific notation to represent electrical quantities with a wide range of magnitudes

1.2

ELECTRIC CIRCUITS AND CURRENT

The outstanding characteristics of electricity when compared with other power sources are its
mobility and flexibility. Electrical energy can be moved to any point along a couple of wires and,
depending on the user’s requirements, converted to light, heat, or motion.
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An electric circuit or electric network is an interconnection of electrical elements linked
together in a closed path so that an electric current may flow continuously.

Consider a s.mple circuit consisting of two well-known electrical elements, a battery and a
resistor, as shown in Figure 1.2-1. Each element is represented by the two-terminal element
shown in Figure 1.2-2. Elements are sometimes called devices, and terminals are some imes

called nodes.

Wire
Battery Resistor
Wire . .
FIGURE 1.2-2 A general two-terminal electrical
FIGURE 1.2-1 A simple circuit. element with terminals a and b.

Charge may flow in an electric circuit. Current is the time rate ofchange ofcharge past a given
point. Charge is the intrinsic property of matter responsible for electric phenomena. The quantity of
charge g can be expressed in terms of the charge on one electron, which is -1.602 x 10 ycoulombs.
Thus, -1 coulomb is the charge on 6.24 x 1018 electrons. The current through a specified area is
defined by the electric charge passing through the area per unit oftime. Thus, q is defined as the charge
expressed in coulombs (C).

Charge is the quantity of electricity responsible for electric phenomena.

Then we can express current as

. dg
i— ot (1.2-12)

The unit of current is the ampere (A); an ampere is 1 coulomb per second.
Current is the time rate of flow of electric charge past a given point.

Note that throughout this chapter we use a lowercase letter, such as g, to denote a variable that is
a function of time, q(t). We use an uppercase letter, such as Q, to represent a constant.

The flow of current is conventionally represented as a flow of positive charges. This convention
was initiated by Benjamin Franklin, the first great American electrical scientist. Of course, we
now know that charge flow in metal conductors results from electrons with a negative charge.
Nevertheless, we will conceive of current as the flow of positive charge, according to accepted
convention.

Figure 1.2-3 shows the notation that we use to describe a current. There are two parts to

a = - - b this notation: a value (perhaps represented by a variable name) and an assigned direction. Asa
— matter ot vocabulary, we say that a current exists in or through an element. Figure 1.2-3 shows

that there are two ways to assign the direction ofthe current through an element. The current/,

FIGURE 1.2-3 Current Is the rate ot flow of electric charge from terminal a to terminal b. On the other hand the

in a circuit element. current i2 is the flow of electric charge from terminal b to terminal a. The currents i, and i2are
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0 /' FIGURE 1.2-4 A direct current of magnitude /.

similar but different. They are the same size but have different directions. Therefore, i2is the negative
of i\ and
Mn=-2n

We always associate an arrow with a current to denote its direction. A complete description of current
requires both a value (which can be positive or negative) and a direction (indicated by an arrow).

If the current flowing through an element is constant, we represent it by the constant /, as shown
in Figure 1.2-4. A constant current is called a direct current (dc).

A direct current (dc) is a current of constant magnitude.

A time-varying current /(/) can take many forms, such as a ramp, a sinusoid, or an exponential, as
shown in Figure 1.2-5. The sinusoidal current is called an alternating current (ac).

FIGURE 1.2-5 (a) A ramp with aslope M. (6) A sinusoid, (c) An exponential. / is a constant. The current / is zero fort < 0.

If the charge q is known, the current i is readily found using Eq. 1.2-1. Alternatively, if the
current i is known, the charge q is readily calculated. Note that from Eq. 1.2-1, we obtain

g= f idx= [ idz + q(0) (1.2-2)
J—eCc Jo

where €(0) is the charge at t= 0.

Example 1.2-1 Current from Charge

Find the current in an element when the charge entering the element is

q= 12/ C
where t is the time in seconds.
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Solution , w e e
Recall that the unit of charge is coulombs, C. Then the current, from Eq. 1.2-1, is

- i=A = 12A
dt

where the unit of current is amperes, A.

Example 1.2-2 Charge from Current

Find the charge that has entered the terminal of an element from /= 0 s to /= 3 s when the current entering the
element is as shown in Figure 1.2-6.

I(A)

4 .

3

2

1 1
1 1 1 t

-1 @ E 2 8 f(s) FIGURE 1.2-6 Current waveform for Example 1.2-2.
Solution
From Figure 1.2-6, we can describe i(t) as
0 /<o
)= {1 o<t<1
t t>1

Using Eqg. 1.2-2, we have

<I@-<10) = I i{ydt= [ 1dtr [ tdt

0

r t2

in+ 2 - 1+2(9-1) = 5C

Alternatively, we note that integration ofi(t) from /= 0 to t = 3 s simply requires the calculation of the area under
the curve shown in Figure 1.2-6. Then, we have

=1+ 2x2=5C

EXERCISE 1.2-1 Find the charge that has entered an element by time t when
/- 8f - 4/ A, t>0. Assume q(t) —0 for t<O.

Answer: q(t) = -r5- 2t2C

a* 2 The tOtal charge that has er>tered a circuit element is g{t) —4 sin 31C when
_ 0. rnd =0 when, < 0, Detem,™ the ¢ ™ t in this crcui, element for ,> 0,

Answer: i{t) = -4 sin 3/ = 12 cos 31A
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Systems of Units

In representing a circuit and its elements, we must define a consistent system of units for the quantities
occurring in the circuit. At the 1960 meeting of the General Conference of Weights and Measures, the
representatives modernized the metric system and created the Systeme International d’Unites,

commonly called SI units.

Sl is Systeme International d "Unites or the International System of Units.

The fundamental, or base, units of SI are shown in Table 1.3-1. Symbols for units that represent proper
(persons’) names are capitalized; the others are not. Periods are not used after the symbols, and the symbols
do not take on plural forms. The derived units for other physical quantities are obtained by combining the
fundamental units. Table 1.3-2 shows the more common derived units along with their formulas in terms of
the fundamental units or preceding derived units. Symbols are shown for the units that have them.

Table 1.3-1 SI Base Units

SI UNIT
QUANTITY NAME
Length meter
Mass kilogram
Time second
Electric current ampere
Thermodynamic temperature kelvin
Amount of substance mole
Luminous intensity candela
Table 13 2 Derived Units in SI
QUANTITY UNIT NAME FORMULA
Acceleration — linear meter per second per second m/s2
Velocity — linear meter per second S
Frequency hertz g-°
Force newton kg sm/s2
Pressure or stress pascal N/m2
Density kilogram per cubic meter kg/m3
Energy or work joule Nem
Power watt s
Electric charge coulomb Aes
Electric potential volt WA
Electric resistance ohm VIA
Electric conductance siemens ANV
Electric capacitance farad ciV
Magnetic flux weber V-s
Inductance henry WO/A

SYMBOL

m
kg
S
A
K
mol
cd

SYMBOL

Hz

Sy =z

IS To® <o s o
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S| Prefixes
MULTIPLE PREFIX SYMBOL
1012 tera T
109 giga G
106 mega M
103 kilo k
10~2 centi c
i<r3 milli m
i<re micro M
i<rg nano n
nriu pico P
Itr 5 femto f

The basic units such as length in meters (m), time in seconds (s), and current in amperes (A) can
be used to obtain the derived units. Then, for example, we have the unit for charge (C) derived from the
product of current and time (A <s). The fundamental unit for energy is the joule (J), which is force
times distance or N em.

The great advantage ofthe Sl system is that it incorporates a decimal system for relating larger or
smaller quantities to the basic unit. The powers of 10 are represented by standard prefixes given in
Table 1.3-3. An example of the common use of a prefix is the centimeter (cm), which is 0.01 meter.

The decimal multiplier must always accompany the appropriate units and is never written by itself.
Thus, we may write 2500 W as 2.5 kW. Similarly, we write 0.012 A as 12 mA.

Example 1.3-1 SI Units

A mass of 150 grams experiences a force of 100 newtons. Find the energy or work expended if the mass moves 10
centimeters. Also, find the power if the mass completes its move in 1 millisecond.

Solution
The energy is found as

energy = force x distance = 100 x 0.1 = 10J

Note that we used the distance in units of meters. The power is found from
ener
power — g){
time period
where the time period is 10~3 s. Thus,

10
Pewer = txtj = 104 W = 10 kW

* /

m~rA~rffesr?3 1 WHICh °f thC three QUITentS " =45 M * h =003 mA' and 3= 25 x

Answer: i3is largest.



Power and Energy

14 VOLTAGE

The basic variables in an electrical circuit are current and voltage. These variables

describe the flow of charge through the elements of a circuit and the energy required to

cause charge to flow. Figure 1.4-1 shows the notation we use to describe a voltage.

There are two parts to this notation: a value (perhaps represented by a variable name)

and an assigned direction. The value of a voltage may be positive or negative. The FIG(JRF , 4, Voltage
direction of a voltage is given by its polarities (+, -). As a matter of vocabulary, we adrc'Jt
say that a voltage exists across an element. Figure 1.4-1 shows that there are two ways

to label the voltage across an element. The voltage vba is proportional to the work required to move a
positive charge from terminal a to terminal b. On the other hand, the voltage vab is proportional to the
work required to move a positive charge from terminal b to terminal a. We sometimes read vbaas “the
voltage at terminal b with respect to terminal a.” Similarly, vab can be read as ‘fthe voltage at terminal
a with respect to terminal b.” Alternatively, we sometimes say that vba is the voltage drop from
terminal a to terminal b. The voltages veb and vba are similar but different. They have the same
magnitude but different polarities. This means that

vab = —vba

When considering vba, terminal b is called the “+ terminal” and terminal a is called the
terminal.” On the other hand, when talking about vab, terminal a is called the “+ terminal” and
terminal b is called the terminal.”

The voltage across an element is the work (energy) required to move a unit positive charge
from the —terminal to the + terminal. The unit of voltage is the volt, V.

The equation for the voltage across the element is

dw

V= dg (1.4-1)

where vis voltage, w is energy (or work), and q is charge. A charge of 1coulomb delivers an energy of
1joule as it moves through a voltage of 1 volt.

15 POWER AND ENERGY

The power and energy delivered to an element are of great importance. For example, the useful output
of an electric lightbulb can be expressed in terms of power. We know that a 300-watt bulb delivers
more light than a 100-watt bulb.

Power is the time rate of expending or absorbing energy.
Thus, we have the equation

(1.5-1)
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(@)

(b)

where p is power in watts, w is energy injoules, and / is time in seconds. The power associated
with the charge flow through an element is

dw dw dq -V (15-2)
P dt dg dt

From Eqg. 1.5-2, we see that the power is simply the product of the voltage across an
element times the current through the element. The power has units of watts.

Two circuit variables are assigned to each element of a circuit: a voltage and a current.
Figure 1.5-1 shows that there are two different ways to arrange the direction of the current

FIGURE 151 (a) The and the polarity of the voltage. In Figure 15-la, the current enters the circuit element at the
passive convention is + terminal of the voltage and exits at the - terminal. In contrast, in Figure 1.5-16, the

used for element

current enters the circuit element at the - terminal of the voltage and exits at the + terminal.

voltage and current. (b) First, consider Figure 1.5-la. When the current enters the circuit element at the +

The passive convention

is not used.

terminal of the voltage and exits at the - terminal, the voltage and current are said to “adhere
to the passive convention.” In the passive convention, the voltage pushes a positive charge in
the direction indicated by the current. Accordingly, the power calculated by multiplying the
element voltage by the element current

p = vi

is the power absorbed by the element. (This power is also called “the power received by the element”
and “the power dissipated by the element.” ) The power absorbed by an element can be either positive
or negative. This will depend on the values of the element voltage and current.

Next, consider Figure 1.5-1 A Here the passive convention has not been used. Instead, the
current enters the circuit element at the - terminal of the voltage and exits at the + terminal. In this
case, the voltage pushes a positive charge in the direction opposite to the direction indicated by the
current. Accordingly, when the element voltage and current do not adhere to the passive convention,
the power calculated by multiplying the element voltage by the element current is the power supplied
by the element. The power supplied by an element can be either positive or negative, depending on
the values of the element voltage and current.

The power absorbed by an element and the power supplied by that same element are
related by

power absorbed = —power supplied

The rules for the passive convention are summarized in Table 1.5-1. When the element voltage and
current adhere to the passive convention, the energy absorbed by an element can be determined from

Power Absorbed or Supplied by an Element

POWER ABSORBED BY AN ELEMENT POWER SUPPLIED BY AN ELEMENT

v +
Because the reference directions of
vand i adhere to the passive
convention, the power

Because the reference directions of
vand / do not adhere to the

passive convention, the power

) p = vi

is the power absorbed by the

element. is the power supplied by the

element.
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Eq. 151 by rewriting it as
dw=pdt (1.5-3)

On integrating, we have

w= f pdz (1*5-4)

J—e0

If the element receives power only for t > t0 and we let t0 = 0, then we have

w= [ pdr (1.5-5)
Jo

Example 1.5-1 Electrical Power and Energy

Let us consider the element shown in Figure 1.5-1a when v= 4V and i= 10 A. Find the power absorbed by the
element and the energy absorbed over a 10-s interval.

Solution
The power absorbed by the element is
Pp=vi=4+10= 40W

The energy absorbed by the element is

fs1U rroJ
H=/ pdt= | 40dt=40mo=400J
Jo Jo
Example 1.5-2 Electrical Power and the Passive Convention I N

Consider the element shown in Figure 1.5-2. The current / and voltage vab adhere to the passive convention, so the
power absorbed by this element is
power absorbed = /evdh= 2 ¢(—4) = —8 W
The current i and voltage vba do not adhere to the passive convention, so the power supplied by this element is
power supplied = /eMma= 2+(4) = 8 W
As expected
power absorbed = —power supplied

i=2A "' +
' —o0b

£ A ,\y FIGURE 1.5-2 The element

- considered in Example 1.5-2.

Now let us consider an example when the passive convention is not used. Then p = vi is the
power supplied by the element.
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Example 1.5-3 Power. Energy, and the Passive Convention

Consider .he circuit shown in Figore 15-3 with v=8." Vandi= 20e"" A for,> 0. Find the power supplied by
this element and the energy supplied by the element over the first second ofoperation. We assume that vand . are

zero fort<o.

b
-° FIGURE 1.5-3 An element with the current

+  flowing into the terminal with a negative voltage sign.

Solution
The power supplied is
p=vi= (80 (D) =180k W
This element is providing energy to the charge flowing through it.
The energy supplied during the first second is

h-= [ pdt— f
Jo Jo
e 211 160
160—~ = _ (e~2- 1) = 80(1 - e~2) = 69.2J
20 2

(160e~2,)dt

Example 1.5-4 Energy ina Thunderbolt

The average current in a typical lightning thunderbolt is 2 x 104 A, and its typical duration is 0.1 s (Williams,
1988). The voltage between the clouds and the ground is 5 x 108 V. Determine the total charge transmitted to the
earth and the energy released.

Solution
The total charge is

(ToX] oA
Q= i(t)dt= / 2 X 104dt= 2 X 103C
Jo Jo

The total energy released is

L p0.\
H= /  Kt) x v(t) dt= , (2 x 104) (5 x 108) dt = 1012 J= 1TJ
0

J

ANC 'S E 1-5-1 Figure E 1.5-1 shows four circuit elements identified by the letters A, B,

(a) Which of the devices supply 12 W?
(b) Which of the devices absorb 12 W?
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(0 Whatis the value of the power received by device Bl
(@  Whatis the value of the power delivered by device Bl
(h)  Whatis the value of the power delivered by device D1

4V - - 2V + 6V 3V
b---Q  ®-mee- 1 0 o—- 1 |- O c b o
3A 6 A 2A 4 A
(A) (B) (© (@) FIGURE E 151

Answers: (a) Band C, (b) Aand D, (c) -12 W, (d) 12 W, (e) -12 W

1.6 CIRCUIT ANALYSIS AND DESIGN

The analysis and design of electric circuits are the primary activities described in this book and are key
skills for an electrical engineer. The analysis of a circuit is concerned with the methodical study of a
given circuit designed to obtain the magnitude and direction of one or more circuit variables, such as a
current or voltage.

The analysis process begins with a statement of the problem and usually includes a given circuit
model. The goal is to determine the magnitude and direction of one or more circuit variables, and the final
task is to verify that the proposed solution is indeed correct. Usually, the engineer first identifies what is
known and the principles that will be used to determine the unknown variable.

The problem-solving method that will be used throughout this book is shown in Figure 1.6-1.
Generally, the problem statement is given. The analysis process then moves sequentially through the
five steps shown in Figure 1.6-1. First, we describe the situation and the assumptions. We also record
or review the circuit model that is provided. Second, we state the goals and requirements, and we

Describe the situation and
the assumptions.

State the goals and
requirements.

Generate a plan to obtain
a solution of the problem.

Act on the plan.

Verify that the proposed
solution is indeed correct.

Communicate the solution.
FIGURE 1.6-1 The problem-solving method.
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normally record the required circuit variable to be determined. The third step is to create a plan that
will help obtain the solution of the problem. Typically, we record the principles and techniques that
pertain to this problem. The fourth step is to act on the plan and carry' out the steps described in the
plan. The final step is to verify that the proposed solution is indeed correct. If it is correct, we
communicate this solution by recording it in writing or by presenting it verbally. If the verification step
indicates that the proposed solution is incorrect or inadequate, then we return to the plan steps,
reformulate an improved plan, and repeat steps 4 and 5.

To illustrate this analytical method, we will consider an example. In Example 1.6-1, we use the

steps described in the problem-solving method of Figure 1.6-1.

------------------ | Example 1.6-1 The Formal Problem-Solving Method

An experimenter in a lab assumes that an element is absorbing power and uses a voltmeter and ammeter to
measure the voltage and current as shown in Figure 1.6-2. The measurements indicate that the voltage is
v=+ 12V and the current is i= -2 A. Determine whether the experimenter’s assumption is correct.

Describe the Situation and the Assumptions: Strictly speaking, the element is absorbing power. The
value of the power absorbed by the element may be positive or zero or negative. When we say that someone
“assumes that an element is absorbing power,” we mean that someone assumes that the power absorbed by
the element is positive.

The meters are ideal. These meters have been connected to the element in such a way as to measure the
voltage labeled v and the current labeled i. The values of the voltage and current are given by the meter
readings.

State the Goals: Calculate the power absorbed by the element to determine whether the value ofthe power
absorbed is positive.

Generate a Plan: Verify that the element voltage and current adhere to the passive convention. If so, the
power absorbed by the device is p = vi. If not, the power absorbed by the device isp ——vi.

Act on the Plan: Referring to Table 1.5-1, we see that the element voltage and current do adhere to the
passive convention. Therefore, power absorbed by the element is

p=vi= 12-(-2) = -24 W

The value of the power absorbed is not positive.
\% erify the Proposed Solution: Let’s reverse the ammeter probes as shown in Figure 1.6-3. Now the
ammeter measures the current /, rather than the currenti,so/, = 2 Aand v= 12 V. Because /, and vdo not adhere

to the passive convention,/? = /, ev= 24 W is the power supplied by the element. Supplying 24 W is equivalent to
absorbing -24 W, thus verifying the proposed solution.

[ 121- 101
Voltmeter o o
— T1 121m10101
" Q Ammeter o

k z & m J I

Element il
Element

FIl.I RE 1.6-3 The circuit from Figure 1.6-2 with the ammeter

t K.t RE 1.6-2 An element with a voltmeter and
ammeter. probes reversed.
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Design is a purposeful activity in which a designer visualizes a desired outcome. It is the process
of originating circuits and predicting how these circuits will fulfill objectives. Engineering design is
the process of producing a set of descriptions of a circuit that satisfy a set of performance requirements
and constraints.

The design process may incorporate three phases: analysis, synthesis, and evaluation. The first
task is to diagnose, define, and prepare—that is, to understand the problem and produce an explicit
statement of goals; the second task involves finding plausible solutions; the third concerns judging the
validity of solutions relative to the goals and selecting among alternatives. A cycle is implied in which
the solution is revised and improved by reexamining the analysis. These three phases are part of a
framework for planning, organizing, and evolving design projects.

Design is the process of creating a circuit to satisfy a set of goals.

The problem-solving process shown in Figure 1.6-1 is used in certain Design Examplesincluded in
each chapter.

1.7 HOW CAN WE CHECK ... ?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For
example, proposed solutions to design problems must be checked to confirm that all of the
specifications have been satisfied. In addition, computer output must be reviewed to guard against
data-entry errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example,
occasionally just a little time remains at the end of an exam. It is useful to be able quickly to identify
those solutions that need more work.

This text includes some examples that illustrate techniques useful for checking the solutions of
the particular problems discussed in that chapter. At the end of each chapter, some problems are
presented that provide an opportunity to practice these techniques.

Example 1.7-1 How Can We Check Power and the Passive Convention?

A laboratory report states that the measured values of v and i for the circuit element
shown in Figure 1.7-1 are -5 V and 2 A, respectively. The report also states that the
power absorbed by the element is 10 W. How can we check the reported value of the

power absorbed by this element? FIGURE 1.7-1 Acircuit

element with measured

Solution voltage and current.

Does the circuit element absorb —10 Wkor -f10 W? The voltage and current shown in Figure 1.7-1do not adhere to
the passive sign convention. Referring to Table 1.5-1, we see that the product of this voltageand current is the
power supplied by the element rather than the power absorbed by the element.

Then the power supplied by the element is

p =vi= (-5)(2) = -10Wr

The power absorbed and the power supplied by an element have the same magnitude but the opposite sign. Thus,
we have verified that the circuit element is indeed absorbing 10 W.
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1.8 DESIGN EXAMPLE |

JET VALVE CONTROLLER

A small, experimental space rocket uses a two- Wire
element circuit, as showii in Figure 1.8-1, to 1 T i Jet value
control a jet valve from point of liftoffat f= 0 L A . controller
until expiration of the rocket after one minute. «; Ele ement
|  The energy that must be supplied by element 1 i
for the one-minute period is 40 mJ. Element lisa
battery to be selected.
It is known that i(t) = ZJe- *60 mA for t > 0, ——
and the voltage across the second element is v2(f) = FIGI RE 1.8-1 The circuit to control
\% for t> 0. The maximum magnitude of tha jet valve for a space rocket.
current, A is limited to 1 mA. Determine the
required constants D and B and describe the required battery.
Describe the Situation and the Assumptions

1. The current enters the plus terminal of the second element.
2. The current leaves the plus terminal of the first element.
3. The wires are perfect and have no effect on the circuit (they do not absorb energy).

4. The model of the circuit, as shown in Figure 1.8-1. assumes that the voltage across the
two elements is equal; that is, \Vj —v2.

5. The battery voltage M is VX= Be~r60 V where B is the initial voltage of the battery’that
will discharge exponentially as it supplies energy' to the valve.

6. The circuit operates fromt= 0to /= 60 s.

7. The current is limited, so D < 1 mA.

State the Goal

Determine the energy supplied by the first element for the one-minute period and then select
the constants D and B. Describe the battery selected.

Generate a Plan

First, find v,(0 and i(t) and then obtain the power, p Xt), supplied by the first element. Next,
using /?,(?), find the energy supplied for the first 60 s.

GOAL EQUATION NEED INFORMATION
The energy wj for the y 60 V] and j known except for
first 60 s Hi —JI0 P\v) dt p Xt) constants D and B

Act on the Plan
First, we need p\(t), so we first calculate

p x{t) ivi = (De~t6> x 10"3 A)[Be~t60 V)

DBe~'/30 x 10’3W = DBe-/3> mW



Second, we need to find w\ for the first 60 s as

w,

Because we require Wi > 40 mJ,
40 < 25.9DB

Next, select the limiting value, D= 1, to get

B
“(25,9)(1)

re® .
| {DBe~m x 10-3) t/f =
-30DB x 10-3(e' 2- 1) = 25.9DB x 10-~31]

Problems

DB x 10-3e-'/30 6"
------ 1/3Q -

54V

Thus, we select a 2-V battery so that the magnitude of the current is less than 1 mA.

Verify the Proposed Solution

We must verify that at least 40 mJ is supplied using the 2-V battery. Because i = e~ '60 mA and

v2—2e~tm V, the energy supplied by the battery is

23] P

w= (2e-60) (e-t6° x 10"3) dt=
Jo Jo

2e~tl30 x 10" 3dt -

518 mJ

Thus, we have verified the solution, and we communicate it by recording the require-

ment for a 2-V battery.

19 SUMMARY

O Charge is the intrinsic property of matter responsible for
electric phenomena. The current in a circuit element is the
rate of movement of charge through the element. The
voltage across an element indicates the energy available
to cause charge to move through the element.

O Given the current, i, and voltage, v, of a circuit element, the
power, p, and energy, W are given by

p=v-i and pdr
Jo

PROBLEMS

Section 1.2 Electric Circuits and Current

P 1.2-1 The total charge that has entered a circuit element is g
(0=1 25(1-e &) when t> 0 and gft) = 0 when t <0. Deter-

mine the current in this circuit element for t> 0.
Answer: i(t) = 6.25e~3 A

P 1.2-2 The current in a circuit element is i(t) = 4(1- e~5t) A
when t> 0 and i(t) —0 when t < 0. Determine the total charge

that has entered a circuit element for t>o0.

O Table 1.5-1 summarizes the use of the passive convention

when calculating the power supplied or received by a circuit
element.

O The Sl units (Table 1.3-1) are used by today’s engineers and

scientists. Using decimal prefixes (Table 1.3-3), we may
simply express electrical quantities with a wide range of
magnitudes.

Hint: g{0) = f i(r)dr=j 0dx=o0
HO) J—Z)() JJ—GD

Answer: q(t) =41+ 0.8~-5'- 0.8 Cfort>0

P 1.2-3 The current in a circuit element is /(f)= 4 sin 51A
when t >0 and i(t) = 0 when t <0. Determine the total charge
that has entered a circuit element for /> 0.

Hint: q(0) = f i(r)dr= 1 0dr=0
o J- J-0



Electric Circuit Variables

P 1.2-4 The current in a circuit element is

0 /<2
2 2</<4
-1 4<t<s
0 8<t

where the units of current are A and the units of time are s.
Determine the total charge that has entered a circuit element

for t>o0.
Answer:
0 t<2
_ - 42</<4 where the units of
- 8-/ 4<t<s
0 g<f

charge are C.
P 1.2-5 The total charge q(t), in coulombs, that enters the
terminal of an element is

ro /<o
q(t) = <21 0<t<2
[l +e-~-V t>2

Find the current /(/) and sketch its waveform for />0.

P 1.2-6 An electroplating bath, as shown in Figure P 1.2-6, is
used to plate silver uniformly onto objects such as kitchen-
ware and plates. A current of 450 A flows for 20 minutes, and
each coulomb transports 1.118 mg of silver. What is the weight
of silver deposited in grams?

Object to

be plated * A ASilver bar

Bath

Figure P 1.2-6 An electroplating bath.

P 1.2-7 Find the charge, q(t), and sketch its waveform when
the current entering a terminal of an element is as shown in
Figure P 1.2-7. Assume that q(t) =0 for t<0.

Section 1.3 Systems of Units

P 1.3-1 A constant current of 3.2 flows through an
element. What is the charge that has passed through the
element in the first millisecond?

Answer: 3.2 nC

P 1.3-2 A charge of 45 nC passes through a circuit element
during a particular interval of time that is 5ms in duration.
Determine the average current in this circuit element during
that interval of time.

Answer: i=9nA

P 1.3-3 Ten bhillion electrons per second pass through a
particular circuit element. WTiat is the average current in
that circuit element?

Answer: i= 1.602 nA

P 1.3-4 The charge flowing in a wire is plotted in Figure
P 1.3-4. Sketch the corresponding current.

Figure P 1.3-4

P 1.3-5 The current in a circuit element is plotted in Figure
P 1.3-5. Sketch the corresponding charge flowing through the
element for t > 0.

P 1.3-6 The current in a circuit element is plotted in Figure
P 1.3-6. Determine the total charge that flows through the
circuit element between 300 and 1200 *s.



Figure P 1.3-6

Section 1.5 Power and Energy

P 1.5-1 Figure P 1.5-1 shows four circuit elements identified
by the letters A, B, C, and D.

(a) Which of the devices supply 30 mw?

(b) Which of the devices absorb 0.03 W?
(c) What is the value of the powerreceived
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(b)
Figure P 1.5-4 (a) Voltage v(t) and (b) current i(t) for an element.

P 1.5-5 An automobile battery is charged with a constant
current of 2A for five hours. The terminal voltage of the
battery isv= 11 + 0.5/ V for t > 0, where t is in hours, (a) Find
the energy delivered to the battery during the five hours, (b) If
electric energy costs 15 cents/kWh, find the cost of charging
the battery for five hours.

by device Blyower: (b) 1.84 cents

(d) What is the value of the powerdelivered bydevice 5?
(e) What is the value of the powerdelivered bydevice C?
+ 10V 5V 6V 15V
°— cm
3 mA 6 mA 5 mA 2 mA
(A) (B) © (D)
Figure P 151

P 1.5-2 Anelectric range has a constant current of 10 A entering
the positive voltage terminal with avoltage of 110 V. The range is
operated for two hours, (a) Find the charge in coulombs that
passes through the range, (b) Find the power absorbed by the
range, (c) If electric energy costs 12 cents per kilowatt-hour,
determine the cost of operating the range for two hours.

P 1.5-3 A walker’s cassette tape player uses four AA
batteries in series to provide 6 V to the player circuit. The
four alkaline battery cells store a total of 200 watt-seconds of
energy. If the cassette player is drawing a constant 10 mA
from the battery pack, how long will the cassette operate at
normal power?

P 1.5-4 The current through and voltage across an element
vary with time as shown in Figure P 1.5-4. Sketch the power
delivered to the element for t > 0. What is the total energy
delivered to the element between /=0 and /= 25 s? The
element voltage and current adhere to the passive convention.

P 1.5-6 Find the power, /?(/), supplied by the element shown
in Figure P 1.5-6 when v{t) =4 cos 31V and i(t) = A

Evaluatep(t) att= 0.5 sand att= 1s. Observe that the power
supplied by this element has a positive value at some times and
a negative value at other times.

Hint: (sin at)(cos bt) = ~ (sin(a + b)t + sin(a —hb)t)

Answer:

p(t) =) sin61 W, />(05) = 00235 W. p(l) = -0.0466 W

Figure P 1.5-6 An element.

P 1.5-7 Find the power, p(t), supplied by the element shown
in Figure P 1.5-6 when v(/) = 8 sin 3fV and /(f) = 2 sin 31A.

Hint: (sin at) (sin bt) = ~ (cos(a - b)t - cos{a + b)t)

Answer: p(t) = 8 - 8cos 61 W

P 1.5-8 Find the power, p(t), supplied by the element shown
in Figure P 1.5-6. The element voltage is represented as
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v(/)=4(l-e~2V when />0 and v(/) = 0 when t< 0. The
element current is represented as /(f) = 2e~~rA when >0
and i(t)=0 when /< 0.

Answer:p(t) = 8(1 —e~2t)e~—~I'W

P 1.5-9 The battery ofa flashlight develops 3V, and the current

through the bulb is 200 mA. What power is absorbed by the bulb?
Find the energy absorbed by the bulb in a five-minute period.

P 1.5-10 Medical researchers studying hypertension often
use a technique called “ 2D gel electrophoresis” to analyze the
protein content ofatissue sample. An image ofatypicalkgel”
is shown in Figure P1.5-10a.

The procedure for preparing the gel uses the electric
circuit illustrated in Figure 1.5-106. The sample consists ofa gel
and a filter paper containing ionized proteins. A voltage source
causes a large, constant voltage, 500 V, across the sample. The
large, constant voltage moves the ionized proteins from the filter
paper to the gel. The current in the sample is given by

/() = 2+ 20eamA
where f is the time elapsed since the beginning of the
procedure and the value of the constant a is

a= 085 %}

Determine the energy supplied by the voltage source when the
gel preparation procedure lasts 3 hours.

(a)

-sample

500 V
<«t
-e -
500 V
(b)
Hgure P 1.5-10 (@) An image of a gel and (b) the electric circuit

used to prepare gel.

Section 1.7 How Can We Check ... ?

P 1.7-1 Conservation of energy requires that the sum of the
power absorbed by all of the elements in a circuit be zero.
igure P 1.7-1 shows a circuit. All ofthe element voltages and

currents are specified. Are these voltage and currents correct?
Justify your answer.

Hint: Calculate the power absorbed by each element. Add up
all ofthese powers. Ifthe sum is zero, conservation of energy
is satisfied and the voltages and currents are probably
correct. If the sum is not zero, the element voltages and
currents cannot be correct.

- BV + 5A

+ 1V -

Figure P 1.7-1

P 1.7-2 Conservation of energy requires that the sum of the
power absorbed by all of the elements in a circuit be zero.
Figure P 1.7-2 shows a circuit. All of the element voltages and
currents are specified. Are these voltage and currents correct?
Justify your answer.

Hint: Calculate the power absorbed by each element. Add up
all of these powers. Ifthe sum is zero, conservation of energy
is satisfied and the voltages and currents are probably
correct. If the sum is not zero, the element voltages and
currents cannot be correct.

3V

-3 A
Figure P 1.7-2
P 1.7-3 The element currents and voltages shown in Figure
P 1.7-3 are correct with one exception: the reference direction

of exactly one of the element currents is reversed. Determine
which reference direction has been reversed.

- 3V +

+

}-5A

Figure P 1.7-3
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DP 1-1 A particular circuit element is available in three grades.
Grade A guarantees that the element can safely absorb 1/2 W
continuously. Similarly, Grade B guarantees that 1/4 W can be
absorbed safely, and Grade C guarantees that 1/8W can be
absorbed safely. As a rule, elements that can safely absorb more
power are also more expensive and bulkier.

The voltage across an element is expected to be about
20V, and the current in the element is expected to be about
8 mA. Both estimates are accurate to within 25 percent. The
voltage and current reference adhere to the passive convention.
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Specify the grade of this element. Safety is the most
important consideration, but don’t specify an element that is
more expensive than necessary.

DP 1-2 The voltage across a circuit element is v(0 = 20 (1—e~&)
V when t> 0 and v(t) = 0 when t < 0. The current in this element
is i(/)= 30e_8,mA when />0 and i(/)=0 when t< 0. The
element current and voltage adhere to the passive convention.
Specify the power that this device must be able to absorb safely.

Hint: Use MATLAB, or a similar program, to plot the power.
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21 INTRODUCTION

Not surprisingly, the behavior of an electric circuit depends on the behaviors of the individual circuit
elements that comprise the circuit. Of course, different types of circuit elements behave differently.
The equations that describe the behaviors of the various types of circuit elements are called the
constitutive equations. Frequently, the constitutive equations describe a relationship between the
current and voltage of the element. Ohm’s law is a well-known example of a constitutive equation.

In this chapter, we will investigate the behavior of several common types of circuit element:

* Resistors

« Independent voltage and current sources
* Open circuits and short circuits

* Voltmeters and ammeters

» Dependent sources

e Transducers

¢ Switches

22 ENGINEERING AND LINEAR MODELS

The art of engineering is to take a bright idea and, using money, materials, knowledgeable people, and a
regard for the environment, produce something the buyer wants at an affordable price.

Engineers use models to represent the elements of an electric circuit. A model is a description of
those properties of a device that we think are important. Frequently, the model will consist of an
equation relating the element voltage and current. Though the model is different from the electric
device, the model can be used in pencil-and-paper calculations that will predict how a circuit
composed ot actual devices will operate. Engineers frequently face a trade-offwhen selecting a model
for a device. Simple models are easy to work with but may not be accurate. Accurate models are
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usually more complicated and harder to use. The conventional wisdom suggests that simple models be
used first. The results obtained using the models must be checked to verify that use of these simple
models is appropriate. More accurate models are used when necessary.

The idealized models of electric devices are precisely defined. It is important to distinguish
between actual devices and their idealized models, which we call circuit elements. The goal of circuit
analysis is to predict the quantitative electrical behavior of physical circuits. Its aim is to predict and to
explain the terminal voltages and terminal currents of the circuit elements and thus the overall
operation of the circuit.

Models of circuit elements can be categorized in a variety of ways. For example, it is
important to distinguish linear models from nonlinear models because circuits that consist
entirely of linear circuit elements are easier to analyze than circuits that contain some
nonlinear elements.

An element or circuit is linear if the element’s excitation and response satisfy certain FIGURE 22-1
properties. Consider the element shown in Figure 2.2-1. Suppose that the excitation is the A\, slament with an
current / and the response is the voltage v. When the element is subjected to a current iu it oy citation current i and
provides a response vj. Furthermore, when the element is subjected to a current 2 it 4 response v.
provides a response v2. For a linear element, it is necessary that the excitation i\ -I- i2 result
in a response vx + V2 This is usually called the principle ofsuperposition.

Also, multiplying the input of a linear device by a constant must have the consequence of
multiplying the output by the same constant. For example, doubling the size ofthe input causes the size
of the output to double. This is called the property o fhomogeneity. An element is linear if, and only if,
the properties of superposition and homogeneity are satisfied for all excitations and responses.

A linear element satisfies the properties of both superposition and homogeneity.

Let us restate mathematically the two required properties of a linear circuit, using the arrow
notation to imply the transition from excitation to response:

Then we may state the two properties required as follows.
Superposition:

1M

h V2
then h + %2 —vi + V2 (2.2-1)
Homogeneity: )

i —v
then ki —»kv (2.2-2)

A device that does not satisfy either the superposition or
nonlinear.

Example 2.2-1 A Linear Device

Consider the element represented by the relationship between current and voltage 4¢
v=Ri
Determine whether this device is linear.
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Solution
The response to a current ii is

v, = Rit
The response to a current i2 is

v2 = Rii

The sum of these responses is
M+ v2 = Ri\ + Rh —~(*1 + %)

Because the sum of the responses to i, and i2 is equal to the response to i, + i2, the principle of superposition is
satisfied. Next, consider the principle of homogeneity. Because

vi = Ri\
we have for an excitation i2 = ki\
\2 = Rii —RKki\
Therefore,
V2 =

satisfies the pnnciple of homogeneity. Because the element satisfies the properties of both superposition and
Ahomogeneity, it is linear.

Example 2.2-2 A Nonlinear Device

Now let us consider an element represented by the relationship between current and voltage:

V=2
Determine whether this device is linear.
Solution
The response to a current i, is

vi = 0.2
The response to a current i2 is

V2 = i,2
The sum of these responses is

VI + V2 = 12+ 1,2

The response to i, + i2is

Ol + %2)2=i\2+ 2%ii2+ ['2
Because
M+ 2 # (i + i2)2

\ the pnnciple of superposition is not satisfied. Therefore, the device is nonlinear. J
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Example 2.2-3 A Model of a Linear Device

A linear element has voltage v and current i as shown in Figure 2.2-2a. Values of the current i and corresponding
voltage v have been tabulated as shown in Figure 2.2-2b. Represent the element by an equation that expresses v as
a function of i. This equation is a model ofthe element. Use the model to predict the value of vcorresponding to a
current of / = 100 mA and the value of i corresponding to a voltage of v= 18 V.

Jr
v, V. i, mA
45 10
11.25 25
225 50
@ (b)

FIGURE 2.2-3 A plot of voltage versus current for the linear

FIGURE 2.2-2 {a) A linear circuit element and (b) a tabulation
@Al treul () vt element from Figure 2.2-2.

of corresponding values of its voltage and current.

Solution

Figure 2.2-3 is a plot of the voltage v versus the current i. The points marked by dots represent corresponding
values of vand i from the rows of the table in Figure 2.2-2b. Because the circuit element is linear, we expect these
points to lie on a straight line, and indeed they do. We can represent the straight line by the equation

v=mi+b

where m is the slope and b is the v-intercept. Noticing that the straight line passes through the origin, v = 0 when
i= 0, we see that b = 0. We are left with

v = mi

The slope m can be calculated from the data in any two rows of the table in Figure 2.2-2b. For example:

11.25-4.5 V 22.5-11.25 . \Y 225 —45 \Y
= 045 = 045 —- — —— 045 —
25 - 10 mA  50-25 0% A g Ty 045 %
Consequently,
m = 0.45 450
mA
and
v = 450/

This equation is a model ofthe linear element. It predicts that the voltage v = 450(0.1) = 45 V corresponds to the
current i = 100mA = 0.1 A and that the current i = 18/450 = 0.04 A = 40 mA corresponds to the voltage
v= 18 V.

EXERCISE 2.2-1 cConsider the circuit element shown in Figure E 2.2-la. A plot of the

element voltage, v, versus the element current,» is shown in Figure E 2.2-1b. The plot is a straight

line that passes through the origin and has a slope with value m. Consequently, vand i are related by
v=mi

Show that this device is linear.
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(b) @)
FIGURE E 2.2-2

@
FIGURE E 2.2-1
EXERCISE 2.2-2 cConsider the circuit element shown in Figure E 2.2-2a. A plot of the

element voltage, v, versus the element current, i, is shown in Figure E 2.2-2b. The plot is a straight
line that has a v-intercept with value b and has a slope with value m. Consequently, v and i are

related by
v—mi-fb

Show that this device is not linear.

23 ACTIVE AND PASSIVE CIRCUIT ELEMENTS

We may classify circuit elements in two categories, passive and active, by determining whether they
absorb energy or supply energy. An element is said to be passive ifthe total energy delivered to it from the
rest of the circuit is always nonnegative (zero or positive). Then for a passive element, with the current
flowing into the -I- terminal as shown in Figure 2.3-la, this means that

w- f wvidr>0 (2.3-1)
J—a
for all values of t.
A passive element absorbs energy.
Entry Exit
node node
t -
Exit Entry FIGURE 2.3-1 (a) The entry node of the current / is the positive node of the voltage v; (b) the
node node entry node of the current i is the negative node of the voltage v. The current flows from the
@ (b)  entry node to the exit node.

An element is said to be active if it is capable of delivering energy. Thus, an active element violates
Eg. 2.3-1 when it is represented by Figure 2.3-1a. In other words, an active element is one that is capable of
generating energy. Active elements are potential sources of energy, whereas passive elements are sinks or
absorbers ot energy. Examples of active elements include batteries and generators. Consider the element
shown in Figure 2.3-1b. Note that the current flows into the negative terminal and out of the positive
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terminal. This element is said to be active if

w= f vidr>20 (2.3-2)

J—e0

for at least one value of /.

An active element is capable of supplying energy.

Example 2.3-1 An Active Circuit Element

A circuit has an element represented by Figure 2.3-16 where the current is a constant 5 A and the voltage is a
constant 6 V. Find the energy supplied over the time interval 0 to T.

Solution
Because the current enters the negative terminal, the energy supplied by the element is given by

w= [ (6)(5)dr = 30TJ
Jo

sThus, the device is a generator or an active element, in this case a dc battery.

24 RESISTORS

The ability of a material to resist the flow of charge is called its resistivity, p. Materials that are good
electrical insulators have a high value of resistivity. Materials that are good conductors of electric
current have low values of resistivity. Resistivity values for selected materials are given in Table 2.4-1.
Copper is commonly used for wires because it permits current to flow relatively unimpeded. Silicon is
commonly used to provide resistance in semiconductor electric circuits. Polystyrene is used as an
insulator.

Resistance is the physical property of an element or device that impedes the flow of current;
it is represented by the symbol R.

Georg Simon Ohm was able to show that the current in a circuit composed of a battery and a
conducting wire of uniform cross-section could be expressed as

Av

24-1
1oL (2.4-1)

Resistivities of Selected Materials

MATERIAL RESISTIVITY p (OHM.CM)
Polystyrene i X 1018
Silicon 2.3 X 105
Carbon 4 X 10~3
Aluminum 2.7 X 10~6

Copper 17 X 10~6
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where A is the cross-sectional area, p the resistivity, L the length, and v the voltage across the
wire element. Ohm, who is shown in Figure 2.4-1, defined the constant resistance R as

R= — (2.4-2)
A
Ohm's law, which related the voltage and current, was published in 1827 as
(24-3)
FIGURE 24-1 The unit of resistance R was named the ohm in honor of Ohm and is usually abbreviated by the
Georg Simon Ohm fl (capital omega) symbol, where 10 = 1V/A. The resistance ofa 10-m length of common

(1787-1854). who

TV cable is 2 mfl.

determined Ohm’s law

in 1827. The ohm was
chosen as the unit of

An element that has a resistance R is called a resistor. A resistor is represented by the
two-terminal symbol shown in Figure 2.4-2. Ohm's law, Eq. 2.4-3, requires that the z-versus-v

electrical resistance in relationship be linear. As shown in Figure 2.4-3, a resistor may become nonlinear outside its

his honor.

normal rated range of operation. We will assume that a resistor is linear unless stated
otherwise. Thus, we will use a linear model of the resistor as represented by Ohm’s law.

In Figure 2.4-4, the element current and element voltage of a resistor are labeled. The

relationship between the directions of this current and voltage is important. The voltage direction

marks one resistor terminal + and the other -. The current zaflows from the terminal marked + to the

terminal marked — This relationship between the current and voltage reference directions is a

convention called the passive convention. Ohm’s law states that when the element voltage and the

element current adhere to the passive convention, then
v =Ria (2.4-4)
Consider Figure 2.4-4. The element currents iaand ibare the same except for the assigned direction, so

a= ~ib

The element current z and the element voltage v adhere to the passive convention,
v = Ria

Replacing ia by —ib gives
v= -Rib

There is a minus signin this equation because the element currentz and theelement voltage v do not

adhere to the passive convention. We must pay attention to the currentdirection so thatwe don’t
overlook this minus sign.

Ohm’s law, Eq. 2.4-3, can also be written as
i=Gv (2.4-5)
where G denotes the conductance in siemens (S) and is the reciprocal of R; that is, G = 1/R. Many

engineers denote the units of conductance as mhos with the u symbol, which is an inverted omega (mho is
ohm spelled backward). However, we will use Sl units and retain siemens as the units for conductance.

FIGURE 2.4-2 Symbol fora
i i istance of? .. . T upv.uu..5 FIGURE 2.4-4 A resistor with
resistor having a resistance of/? S .
ohms. Y\”thm its specified current range, + element current and element
im can be modeled by Ohm’s law. voltage.
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FIGURE 2.4-5 (a) Wirewound resistor with an
(b) adjustable center tap. (b) Wirewound resistor with a
fixed tap. Courtesy of Dale Electronics.

FIGURE 2.4-6 Small thick-film resistor chips used for FIGURE 2.4-7 A l/4-watt metal film resistor. The body
miniaturized circuits. Courtesy of Coming Electronics. of the resistor is 6 mm long. Courtesy of Dale Electronics.

Most discrete resistors fall into one of four basic categories: carbon composition, carbon film,
metal film, or wirewound. Carbon composition resistors have been in use for nearly 100 years and
are still popular. Carbon film resistors have supplanted carbon composition resistors for many
general-purpose uses because oftheir lower cost and better tolerances. Two wirewound resistors are
shown in Figure 2.4-5.

Thick-film resistors, as shown in Figure 2.4-6, are used in circuits because of their low cost and
small size. General-purpose resistors are available in standard values for tolerances of 2, 5, 10, and 20
percent. Carbon composition resistors and some wirewounds have a color code with three to five
bands. A color code is a system of standard colors adopted for identification of the resistance of
resistors. Figure 2.4-7 shows a metal film resistor with its color bands. This is a 1/4-watt resistor,
implying that it should be operated at or below 1/4 watt of power delivered to it. The normal range of
resistors is from less than 1 ohm to 10 megohms. Typical values of some commercially available
resistors are given in Appendix D.

The power delivered to a resistor (when the passive convention is used) is

(2.4-6)
Alternatively, because v = iR, we can write the equation for power as

p = vi= (iR)i = iR (2.4-7)

Thus, the power is expressed as a nonlinear function of the current i through the resistor or of the
voltage v across it.

Recall the definition of a passive element as one for which the energy absorbed is always
nonnegative. The equation for energy delivered to a resistor is

(2.4-8)
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Because i2 is always positive, the energy is always positive and the resistor is a passive element.

Resistance is a measure of an element's ability to dissipate power irreversibly.

Exampte 2.4-1 Power Dissipated by a Resistor

Let us devise a model for a car battery when the lights are left on and the engine is
off. We have all experienced or seen a car parked with its lights on. Ifwe leave the car
for a period, the battery will run down or go dead. An auto battery is a 12-V constant- 12v
voltage source, and the lightbulb can be modeled by a resistor of 6 ohms. The circuit is
shown in Figure 2.4-8. Let us find the current the power p, and the energy supplied

by the battery for a four-hour period.
FIGURE 2.4-8 Model of a

. car battery and the
Solution headlight lamp.

According to Ohm’s law, Eq. 2.4-3, we have
v = Ri

Because v= 12V and R —6 Q, we have i = 2 A.
To find the power delivered by the battery, we use
p—vi—12(2) = 24 W

Finally, the energy delivered in the four-hour period is

W= [ pdz —24/ = 24(60 x 60 x 4) = 3.46 x 105
Jo

Because the battery has a finite amount of stored energy, it will deliver this energy and eventually be unable to
deliver further energy without recharging. We then say the battery is run down or dead until recharged. A typical
auto battery may store 106 J in a fully charged condition.

EXERCISE 2.4-1 Find the power absorbed by a 100-chm resistor when it is connected directly
across a constant 10-V source.

Answer: 1-W

EXERCISE2.4-2 Avoltage source v= 10 cos/V is connected across a resistor of 10 ohms. Find
the power delivered to the resistor.

Answer: 10 cos2/ W

25 INDEPENDENT SOURCES

Some devices are intended to supply energy to a circuit. These devices are called sources Sources are

categorized as being one of two types: voltage sources and current sources. Figure 2 5-la shows the
symbol lhat ,sus* ,0 ,ep,es,,,, a voltage source. The vol.age ofa »,,Ilage ia 111
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current is determined by the rest of the circuit. A voltage source is described by specifying the function
v(/), for example,
v(t) = 12 cos 1000/ or v(f) =9 or v(t) = 12-2/

An active two-terminal element that supplies energy to a circuit is asource of energy. An independent
voltage source provides a specified voltage independent of the current through it and is independent of

any other circuit variable.

A source is a voltage or current generator capable of supplying energy to a circuit.

An independent current source provides a current independent of the voltage across the source
element and is independent of any other circuit variable. Thus, when we say a source is independent,
we mean it is independent of any other voltage or current in the circuit.

An independent source is a voltage or current generator not dependent on other circuit
variables.

Suppose the voltage source is a battery and
v(/) = 9volts

The voltage of this battery is known to be 9 volts regardless of the circuit in which the battery is used.
In contrast, the current of the voltage source is not known and depends on the circuit in which the
source is used. The current could be 6 amps when the voltage source is connected to one circuit and 6
milliamps when the voltage source is connected to another circuit.

Figure 2.5-16 shows the symbol that is used to represent a current source. The current of a
current source is specified, but the voltage is determined by the rest of the circuit. A current source is
described by specifying the function /(/), for example,

i(t) = 6 sin 500/ or i(t)=—0.25 or i(t)=/438

A current source specified by /(/) = —0.25 milliamps will have a current of —0.25 milliamps in any
circuit in which it is used. The voltage across this current source will depend on the particular
circuit.

The preceding paragraphs have ignored some complexities to give a simple description of the
way sources work. The voltage across a 9-volt battery may not actually be 9 volts. This voltage
depends on the age of the battery, the temperature, variations in manufacturing, and the battery
current. It is useful to make a distinction between real sources, such as batteries, and the simple
voltage and current sources described in the preceding paragraphs. It would be ideal if the real
sources worked like these simple sources. Indeed, the word ideal is used to make this distinction.
The simple sources described in the previous paragraph are called the ideal voltage source and the
ideal current source.

The voltage of an ideal voltage source is given to be a specified function, say v(/). The
current is determined by the rest of the circuit.

The current of an ideal current source is given to be aspecified function, say /(/). The
voltage is determined by the rest of the circuit.

An ideal source is a voltage or a current generator independent of the current through
the voltage source or the voltage across the current source.

(a)

+

vit) (T) M

A
(b)

FIGURE 25-1
(a) Voltage
source.

(b) Current
source.
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Examplte 2.5-1 A Battery Modeled as a Voltage Source

Consider the plight ofthe engineer who needs to analyze a circuit containing a 9-volt battery. Is it really necessary
for this engineer to include the dependence of battery voltage on the age ofthe battery, the temperature, variations
in manufacturing, and the battery current in this analysis? Hopefully not. We expect the battery to act enough like
an ideal 9-volt voltage source that the differences can be ignored. In this case, it is said that the battery is modeled
as an ideal voltage source.

To be specific, consider a battery specified by the plot of voltage versus current shown in Figure 2.5-2a. |his
plot indicates that the battery voltage will be v = 9 volts when i < 10 milliamps. As the current increases above 10
milliamps. the voltage decreases from 9 volts. When i < 10 milliamps, the dependence of the battery voltage on
the battery current can be ignored and the battery can be modeled as an ideal voltage source.

vV, volts

FIGURE 25-2 (a) A plot of battery voltage versus
battery current. (b) The battery is modeled as an
(a) (b) independent voltage source.

Suppose a resistor is connected across the terminals of the battery as shown in Figure 2.5-2b. The battery
current will be

<-5 P5-D

The relationship between v and i shown in Figure 2.5-2a complicates this equation. This complication can be
safely ignored when / < 10 milliamps. When the battery is modeled as an ideal 9-volt voltage source, the voltage
source current is given by

>= | (2.52)

The distinction between these two equations is important. Eq. 2.5-1, involving the v—i relationship shown in
Figure 2.5-2a, is more accurate but also more complicated. Equation 2.5-2 is simpler but may be inaccurate.
Suppose that R = 1000 ohms. Equation 2.5-2 gives the current of the ideal voltage source:

9
»= 'm: IMmA (’2 §-§;

Because this current is less than 10 milliamps, the ideal voltage source is a good model for the battery, and it is
reasonable to expect that the battery current is 9 milliamps.

Suppose, instead, that R — 600 ohms. Once again, Eq. 2.5-2 gives the current of the ideal voltage source:

'= 600 = 15mA (2-5-4)
Because this current is greater than 10 milliamps, the ideal voltage source is not a good model for the battery In this
.case, it is reasonable to expect that the battery current is different from the current for the ideal voltage source.

Engineers frequently face a trade-off when selecting a model for a device. Simple models

T ax t° W ™N\j‘hA" . . Accurate mode,s are “«‘ >* m»<« €0 H cZ and
harder Eo use. The conventional wisdom suggesfs {ﬁat simple models Be u§>e(f<ﬁrs{n ‘Phe resuns
obtained using the models must be checked to verify that use of these simple models is
appropriate. More accurate models are used when necessary.
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The short circuit and open circuit are special cases of ideal sources. A short circuit is an ideal
voltage source having v(t) = 0. The current in a short circuit is determined by the rest of the circuit. An
open circuit is an ideal current source having i(t) = 0. The voltage across an open circuit is determined
by the rest ofthe circuit. Figure 2.5-3 shows the symbols used to represent the short circuit and the open
circuit. Notice that the power absorbed by each of these devices is zero.

Open and short circuits can be added to a circuit without disturbing the branch currents and
voltages of all the other devices in the circuit. Figure 2.6-3 shows how this can be done. Figure
2.6-3a shows an example circuit. In Figure 2.6-3b an open circuit and a short circuit have been added
to this example circuit. The open circuit was connected between two nodes of the original circuit. In
contrast, the short circuit was added by cutting a wire and inserting the short circuit. Adding open
circuits and short circuits to a network in this way does not change the network.

Open circuits and short circuits can also be described as special cases of resistors. A resistor
with resistance R = 0 (G = oc) is a short circuit. A resistor with conductance G = 0 (R = o0o) is an
open circuit.

26 VOLTMETERS AND AMMETERS

Measurements of dc current and voltage are made with direct-reading (analog) or digital meters,
as shown in Figure 2.6-1. A direct-reading meter has an indicating pointer whose angular
deflection depends on the magnitude of the variable it is measuring. A digital meter displays a set
of digits indicating the measured variable value.

To measure a voltage or current, a meter is connected to a circuit, using terminals called
probes. These probes are color coded to indicate the reference direction of the variable being
measured. Frequently, meter probes are colored red and black. An ideal voltmeter measures the
voltage from the red to the black probe. The red terminal is the positive terminal, and the black
terminal is the negative terminal (see Figure 2.6-2b).

An ideal ammeter measures the current flowing through its terminals, as shown in Figure
2.6-2a and has zero voltage, vm, across its terminals. An ideal voltmeter measures the voltage
across its terminals, as shown in Figure 2.6-2b, and has terminal current, zm, equal to zero.
Practical measuring instruments only approximate the ideal conditions. For a practical ammeter,
the voltage across its terminals is usually negligibly small. Similarly, the current into a voltmeter
is usually negligible.

Ideal voltmeters act like open circuits, and ideal ammeters act like short circuits. In other
words, the model of an ideal voltmeter is an open circuit, and the model of an ideal ammeter is a
short circuit. Consider the circuit of Figure 2.6-3a and then add an open circuit with a voltage vand
a short circuit with a current i as shown in Figure 2.6-3b. In Figure 2.6-3c, the open circuit has been
replaced by a voltmeter, and the short circuit has been replaced by an ammeter. The voltmeter will
measure the voltage labeled v in Figure 2.6-3b whereas the ammeter will measure the current
labeled /. Notice that Figure 2.6-3c could be obtained from Figure 2.6-3a by adding a voltmeter

aml
9  Ammeter q
Element /

(a)

HGURE 2.6-2 (a) Ideal ammeter, (D) Ideal voltmeter.

lii(t) =i
3

v(t)

()
v(®)=0 )

(b)
FIGURE 2.5-3

(@) Open circuit.
(6) Short circuit.

()

(b)

FIGURE 2.6-1
{a) A direct-
reading (analog)
meter.

(6) A digital
meter.
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FIGURE 2.6-3 (a) An example circuit, (b) plus an open circuit and a short circuit, (c) The open circuit is replaced by a
voltmeter, and the short circuit is replaced by an ammeter.

and an ammeter. Ideally, adding the voltmeter and ammeter in this way does not disturb the circuit.
One more interpretation of Figure 2.6-3 is useful. Figure 2.6-3b could be formed from Figure 2.6-3c by
replacing the voltmeter and the ammeter by their (ideal) models.

The reference direction is an important part of an element voltage or element current. Figures
2.6-4 and 2.6-5 show that attention must be paid to reference directions when measuring an element
voltage or element current. Figure 2.6-4a shows a voltmeter. Voltmeters have two color-coded probes.
This color coding indicates the reference direction of the voltage being measured. In Figures 2.6-4b
and Figure 2.6-4c the voltmeter is used to measure the voltage across the 6-kH resistor. When the
voltmeter is connected to the circuit as shown in Figure 2.6-4b, the voltmeter measures va, with + on

() (b) (c)

I KUJRE 2.6-4 (a) The correspondence between the color-coded probes of the voltmeter and the reference direction of the
measured voltage. In (ft), the + sign ofvais on the left, whereas in (c), the + sign of v,, is on the right. The colored probe is
shown here in blue. Inthe laboratory this probe will be red. We will refer to the colored probe as ihe “red probe.*
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(a) (b) ()

FIGURE 2.6-5 (a) The correspondence between the color-coded probes of the ammeter and the reference direction of
the measured current. In (b) the current zis directed to the right, while in (c) the current is directed to the left. The
colored probe is shown here in blue. Inthe laboratory this probe will be red. We will refer to the colored probe as the
“red probe.”

the left, at the red probe. When the voltmeter probes are interchanged as shown in Figure 2.6-4c, the
voltmeter measures V¥, with + on the right, again at the red probe. Note vb = —va.

Figure 2.6-5a shows an ammeter. Ammeters have two color-coded probes. This color coding
indicates the reference direction of the current being measured. In Figures 2.6-5b and ¢, the ammeter is
used to measure the current in the 6-kO resistor. When the ammeter is connected to the circuit as shown in
Figure 2.6-5b, the ammeter measures z, directed from the red probe toward the black probe. When the
ammeter probes are interchanged as shown in Figure 2.6-5c, the ammeter measures 4, again directed
from the red probe toward the black probe. Note 2 = —ia-

27 DEPENDENT SOURCES

Dependent sources model the situation in which the voltage or current of one circuit element is
proportional to the voltage or current of the second circuit element. (In contrast, a resistor is a circuit
element in which the voltage of the element is proportional to the current in the same element.)
Dependent sources are used to model electronic devices such as transistors and amplifiers. For
example, the output voltage of an amplifier is proportional to the input voltage of that amplifier, so an
amplifier can be modeled as a dependent source.

Figure 2.7-la shows a circuit that includes a dependent source. The diamond symbol represents
a dependent source. The plus and minus signs inside the diamond identify the dependent source as a
voltage source and indicate the reference polarity of the element voltage. The label “5/” represents
the voltage of this dependent source. This voltage is a product of two factors, 5 and z The second
factor, z indicates that the voltage of this dependent source is controlled by the current, z in the 18-0
resistor. The first factor, 5, is the gain ofthis dependent source. The gain of this dependent source is the
ratio of the controlled voltage, 5z to the controlling current, i. This gain has units of V/A or O.
Because this dependent source is a voltage source and because a current controls the voltage, the
dependent source is called a current-controlled voltage source (CCVS).

Figure 2.7-16 shows the circuit from 2.7-la, using a different point of view. In Figure 2.7-16, a
short circuit has been inserted in series with the 18-0 resistor. Now we think ofthe controlling current i
as the current in a short circuit rather than the current in the 18-0 resistor itself In this way, we can
always treat the controlling current of a dependent source as the current in a short circuit. We will use
this second point of view to categorize dependent sources in this section.

Figure 2.7-Ic shows a circuit that includes a dependent source, represented by the diamond
symbol. The arrow inside the diamond identifies the dependent source as a current source and indicates
the reference direction of the element current. The label “0.2v” represents the current of this
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5i

@) (b)

>0.2v

(c) (d)

FIGURE 2.7-1 The controlling current of a dependent source shown as (a) the current in an element and as (6) the
current in a short circuit in series with that element. The controlling voltage of a dependent source shown as (c) the
voltage across an element and as (d ) the voltage across an open circuit in parallel with that element.

dependent source. This current is a product of two factors, 0.2 and v. The second factor, v, indicates
that the current of this dependent source is controlled by the voltage, v, across the 18-fl resistor. The
first factor, 0.2, is the gain of this dependent source. The gain ofthis dependent source is the ratio ofthe
controlled current, 0.2v, to the controlling voltage, v. This gain has units of ATV. Because this
dependent source is a current source and because a voltage controls the current, the dependent source
is called a voltage-controlled current source (VCCS).

Figure 2.7-\d shows the circuit from Figure 2.7-Ic, using a different point ofview. In Figure 2.7-
1d, an open circuit has been added in parallel with the 18-fl resistor. Now we think of the controlling
voltage v as the voltage across an open circuit Figure 2.7-1, rather than the voltage across the 18-fl
resistor itself. In this way, we can always treat the controlling voltage of a dependent source as the
voltage across an open circuit.

We are now ready to categorize dependent source. Each dependent source consists of two parts:
the controlling part and the controlled part. The controlling part is either an open circuit or a short
circuit. The controlled part is either a voltage source or a current source. There are four types of
dependent source that correspond to the four ways of choosing a controlling part and a controlled part.
These four dependent sources are called the voltage-controlled voltage source (VCVS), current-
controlled voltage source (CCVS), voltage-controlled current source (VCCS), and current-controlled
current source (CCCS). The symbols that represent dependent sources are shown in Table 2.7-1.

Consider the CCVS shown in Table 2.7-1. The controlling element is a short circuit. The
element current and voltage of the controlling element are denoted as ic and vc. The voltage across a
short circuit is zero, so vc = 0. The short-circuit current, z, is the controlling signal of this dependent

source. The controlled element is a voltage source. The element current and voltage of the controlled
element are denoted as and v The voltage is controlled by ic:

vd = ri'c

The constant r is called the gain of the CCVS. The current id, like the current in any voltage source is
determined by the rest of the circuit.
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T«ble2 7 1 Dependent Sources
SYMBOL

description

Current-Controlled Voltage Source (CCVS)
r is the gain of the CCVS.

r has units of volts/ampere. Ur=o wd = ric

Voltage-Controlled Voltage Source (VCVS)
b is the gain of the VCVS.
b has units of volts/volt. vd = bvc

|i ic=0
Voltage-Controlled Current Source (VCCS) )
g is the gain of the VCCS.
g has units of amperes/volt.

*d =

Current-Controlled Current Source (CCCS) ve=0 /d = dic
d is the gain of the CCCS.
d has units of amperes/ampere.

Next, consider the VCVS shown in Table 2.7-1. The controlling element is an open circuit. The
current in an open circuit is zero, so ic= 0. The open-circuit voltage, vc, is the controlling signal ofthis
dependent source. The controlled element is a voltage source. The voltage vd is controlled by vc:

W = bvc
The constant b is called the gain of the VCVS. The current id is determined by the rest of the circuit.
The controlling element ofthe VCCS shown in Table 2.7-1 is an open circuit. The current in this

open circuit is ic = 0. The open-circuit voltage, vc, is the controlling signal of this dependent source.
The controlled element is a current source. The current a is controlled by vc:

*d= gvc
The constant g is called the gain of the VCCS. The voltage vd, like the voltage across any current
source, is determined by the rest of the circuit.
The controlling element of the CCCS shown in Table 2.7-1 is a short circuit. The voltage across this

open circuit is vc = 0. The short-circuit current, z, is the controlling signal of this dependent source. The
controlled element is a current source. The current  is controlled by z:

4 = dic
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(a) (b)

FIGURE 2.7-2 (a) A symbol for a transistor, (b) A model of the transistor, (c) A transistor amplifier. (d) A model of
the transistor amplifier.

The constant d is called the gain of the CCCS. The voltage vd, like the voltage across any current
source, is determined by the rest of the circuit.

Figure 2.7-2 illustrates the use of dependent sources to model electronic devices. In certain
circumstances, the behavior of the transistor shown in Figure 2.1-2a can be represented using the model
shown in Figure 2.7-26. This model consists of a dependent source and a resistor. The controlling
element ofthe dependent source is an open circuit connected across the resistor. The controlling voltage
is vbe. The gain ofthe dependent source isgm. The dependent source is used in this model to represent a
property of the transistor, namely, that the current ic is proportional to the voltage vbe, that is,

= gmve

where gmhas units of amperes/volt. Figures 2.7-2c and d illustrate the utility of this model. Figure
2.7-2d is obtained from Figure 2.7-2c¢ by replacing the transistor by the transistor model.

Example 2.7-1 Power and Dependent Sources

Determine the power absorbed by the VCVS in Figure 2.7-3.

Solution

The VCVS consists of an open circuit and a controlled-voltage source. There is no current in the open circuit, so
no power is absorbed by the open circuit.

The voltage, vc, across the open circuit is the controlling signal of the VCVS. The voltmeter measures

ve to be

ve= 2V

The voltage of the controlled voltage source is

W=2vc= 4V

The ammeter measures the current in the controlled voltage source to be

id= 15A
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FIGURE 2.7-3 A circuit containing a VCVS. The meters
indicate that the voltage of the controlling element is vc = 2.0
volts and that the current of the controlled element is id= 1.5
amperes.

The element current, zd, and voltage, vd, adhere to the passive convention. Therefore,

p=idd= (1-5)(4) = 6W
is the power absorbed by the VCVS.

EXERCISE 2.7-1 Find the power absorbed by the CCCS in Figure E 2.7-1.

FIGURE E 2.7-1 A circuit containing a CCCS. The meters indicate that the current of the controlling element is ic =
- 1.2 amperes and that the voltage of the controlled element is vd= 24 volts.

Hint: The controlling element of this dependent source is a short circuit. The voltage across a short
circuit is zero. Hence, the power absorbed by the controlling element is zero. How much power is
absorbed by the controlled element?

Answer: -115.2 watts are absorbed by the CCCS. (The CCCS delivers +115.2 watts to the rest of
the circuit.)

28 TRANSDUCERS

Transducers are devices that convert physical quantities to electrical quantities. This section describes

two transducers: potentiometers and temperature sensors. Potentiometers convert position to resist-
ance. and temperature sensors convert temperature to current.
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Figure 2 8-1a shows the symbol for the potentiometer. The potentiometer is a

resistor having a third contact, called the wiper, that slides along the resistor. Two

(1-aRo parameters, Rpand a, are needed to describe the potentiometer. The parameter Rp
specifies the potentiometer resistance [Rp > 0). The parameter a represents the

wiper position and takes values in the range 0 < a < 1 The valuesa=0anda= 1

aRn correspond to the extreme positions of the wiper.

Figure 2.8-16 shows a model for the potentiometer that consists of two

resistors. The resistances of these resistors depend on the potentiometer parameters

@ (b) Rpand a.

Frequently, the position of the wiper corresponds to the angular position of a
FIGURE 2.8-1 (a) The symbol shaft connected to the potentiometer. Suppose 9 is the angle in degrees and 0 <9 <
and (b) a model for the 360. Then,

potentiometer.
k=]

~ 360

Example 2.8-1 Potentiometer Circuit

Figure 2.8-2a shows a circuit in which the voltage measured by the meter gives an indication of the angular
position of the shaft. In Figure 2.8-2b, the current source, the potentiometer, and the voltmeter have been
replaced by models of these devices. Analysis of Figure 2.8-2b yields

(I-a)/?p
r-wWyv -

‘D aRn

FIGURE 2.8-2 (a) A circuit containing a
potentiometer, (b) An equivalent circuit containing
(a) (b) a model of the potentiometer.

Solving for the angle gives

Suppose Rp- 10kfi and /- 1mA. An angle of 163° would cause an output of vm= 4.53 V. A meter reading of
7.83 V would indicate that 9 = 282°.

Temperature sensors, such as the AD590 manufactured by Analog Devices are current
sources having current proportional to absolute temperature. Figure 2.8-3a shows the symbol used

s%@ﬁM@\mureesg\nsor to operate propQIy, th’et.%ranch vgg:gue tmtt%mptln%
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condition
4 volts < v < 30 volts
When this condition is satisfied, the current, /, in microamps, is numerically equal to

the temperature T, in degrees Kelvin. The phrase numerically equal indicates that the current
and temperature have the same value but different units. This relationship can be expressed

as (a)
i—k T

PEA.
where k = 1°—K, a constant associated with the sensor.

V() i) = kT
EXERCISE2.8-1 For the potentiometer circuit of Figure 2 .8-2, calculate the meter voltage, 0

vm when 0 = 45°, Rp = 20 kft, and 1=2 mA.

Answer: vm= 5V

(b)
EXERCISE 2.8-2 The voltage and current of an AD590 temperature sensor of Figure 2.8-3 ~ FIGURE 2.8-3
are 10 V and 280 //A, respectively. Determine the measured temperature. (a) The symbol and

(b) a model for the
Answer: T = 280°K, or approximately 6.85°C

29 SWITCHES

Switches have two distinct states: open and closed. Ideally, a switch acts as a short circuit
when it is closed and as an open circuit when it is open.

Figures 2.9-1 and 2.9-2 show several types of switches. In each case, the time when the switch
changes state is indicated. Consider first the single-pole, single-throw (SPST) switches shown in Figure
2.9-1. The switch in Figure 2.9-1a is initially open. This switch changes state, becoming closed, at time
t= 0s. When this switch is modeled as an ideal switch, it is treated like an open circuit when t < 0 s and
like a short circuit when t > 0 s. The ideal switch changes state instantaneously. The switch in Figure
2.9-16 is initially closed. This switch changes state, becoming open, at time / = 0 s.

Next, consider the single-pole, double-throw (SPDT) switch shown in Figure 2.9-la. This SPDT
switch acts like two SPST switches, one between terminals ¢ and a. another between terminals ¢ and b.
Before t = 0's, the switch between c and a is closed and the switch between c and b is open. Att= 05,
both switches change state; that is, the switch between a and c opens, and the switch between c and b
closes. Once again, the ideal switches are modeled as open circuits when they are open and as short
circuits when they are closed.

In some applications, it makes a difference whether the switch between c and b closes before, or
after, the switch between ¢ and a opens. Different symbols are used to represent these two types of

----- Y Q- Ly ) e
t:8 t=0 t=0 0---ob =0 ---0b
Initially open Initially closed Make before break
(@) (b) (b)

f 1GURE 29-" SPST switches, (a) Initially open and (b)) FIGURE 2.9-2 SPDT switches, (a) Break before make
initially closed. anj  ma”e before break.
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sinele-pole. double-throw switch. The break-before-make switch is manufactured so that the switch
between c and b closes after the switch between ¢ and a opens. The symbol tor the break-betore-make
switch is shown in Figure 2.9-2a. The make-before-break switch is manufactured so that the switch
between ¢ and b closes before the switch between ¢ and a opens. The symbol tor the make-before-
break switch is shown in Figure 2.9-26. Remember: the switch transition from terminal a to terminal b
is assumed to take place instantaneously. This instantaneous transition is an accurate model when the
actual make-before-break transition is very fast compared to the circuit time response.

1 Example 2.9-1 Switches

Figure 2.9-3 illustrates the use of open and short circuits for modeling ideal switches. In Figure 2.9-3a, a circuit
containing three switches is shown. In Figure 2.9-3b, the circuit is shown as it would be modeled before t = 0 s.
The two single-pole, single-throw switches change state attime t = 0 s. Figure 2.9-3c shows the circuit as it would
be modeled when the time is between 0 sand 2 s. The single-pole, double-throw switch changes state attime t - 2
s. Figure 2.9-3d shows the circuit as it would be modeled after 2 s.

-AMr 0------- W V —-em-
5kQ/:25 4 kQ 5 kQ 4 kQ
12 kQ 10 kO 12 Kii 10 kQ
M= 00— VW o— VW —" VW - o VW—"
t=0s t-0s
12V 8 kQ 6V(p 12v(j) FIGURE 2.9-3
(a) A circuit
(O) (c) containing
several switches.
0 W V —oemev -AAAr (b) The
5kQ 4 kQ 5 kEl 4 kQ equivalent circuit
12 kQ 10 kQ 12 kEi 10 kQ fort<os.
AW V- —8 o0—VW—1 o—AMN— = (O The

equivalent circuit

12V ev(p ﬂ(p 8 kQ » foro < t<2s.
(d) The

b equivalent circuit
(b) (d) for/>2s.

EXERCISE 2.9-1 wWhat is the value of the current i in Figure E 2.9-1 at time t = 4 s?

Answer: i - 0 amperes at t = 4 s (both switches are open).

EXERCISE 2.9-2 wWhat is the value ofthe voltage v in FigureE 2 .9-2 attime t= 4 s? At t= 6 s?
Answer: v= 56 voltsatt=4s,and v= 0 voltsat/ = 6 s.
»=58 t=3s
t*5s

_ 07\3kQ<

12V© 3 kQ 6VO N2 mA
*\

FItilIRF £ 291 A with SPST, ., Khe,. STOT AR ‘ n'*ke b' r'"->3'ak
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210 How CAN WE CHECK ...?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For
example, proposed solutions to design problems must be checked to confirm that all of the
specifications have been satisfied. In addition, computer output must be reviewed to guard against
data-entry errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example,
occasionally just a little time remains at the end of an exam. It is useful to be able quickly to identify
those solutions that need more work.

The following example illustrates techniques useful for checking the solutions of the sort of

problem discussed in this chapter.

___________________ \

Example 2.10-1 How Can We Check Voltage and Current Values?

The meters in the circuit of Figure 2.10-1 indicate that vj = —4 V, v2= 8 V and thati = 1A. How can we check
that the values of vis v2, and / have been measured correctly? Let’s check the values of v,, v2, and i in two ways:

(a) Verify that the given values satisfy Ohm’s law for both resistors.

(b) Verify that the power supplied by the voltage source is equal to the power absorbed by the resistors.

FIGURE 2.10-1 A circuit with meters.

Solution

(a) Consider the 8-Cl resistor. The current i flows through this resistor from top to bottom. Thus, the current i and
the voltage v2 adhere to the passive convention. Therefore, Ohm’s law requires that v2 = 8/. The values v2 =
8 Vand i = 1A satisfy this equation.

Next, consider the 4-11 resistor. The current / flows through this resistor from left to right. Thus, the
current i and the voltage vj do not adhere to the passive convention. Therefore, Ohm’s law requires that
\f = 4(—). The values M = —4 V and / = 1 A satisfy this equation.
Thus, Ohm’s law is satisfied.

(b) The current / flows through the voltage source from bottom to top. Thus the current i and the voltage 12 V do
not adhere to the passive convention. Therefore, 12/ = 12(1) = 12 W is the power supplied by the voltage
source. The power absorbed by the 4-0 resistor is 4i2 = 4(12) = 4W, and the power absorbed by the 8-1)

resistor is 8/ —8(1 ) = 8 W. The power supplied by the voltage source is indeed equal to the power
absorbed by the resistors.
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..... 2.11 design example

TEMPERATURE SENSOR

Currents can be measured easily, using ammeters. A temperature sensor, such as Analog
Devices’ AD590. can be used to measure temperature by converting temperature to current.
Figure 2.11-1 shows a symbol used to represent a temperature sensor. For this sensor to
operate properly, the voltage v must satisfy the condition

4 volts < v < 30 volts

R

AD590

FIGURE 2.11-1
A temperature sensor.

When this condition is satisfied, the current i, in /XA, is numerically equal to the
temperature T, in °K. The phrase numerically equal indicates that the two variables have the
same value but different units.

MA
°K

The goal isto design a circuit using the AD590 to measure the temperature ofa container of
water. In addition to the AD590 and an ammeter, several power supplies and an assortment of
standard 2 percent resistors are available. The power supplies are voltage sources. Power supplies
having voltages of 10. 12, 15, 18, or 24 volts are available.

i=k T where k=1

Describe the Situation and the Assumptions
For the temperature transducer to operate properly, its element voltage must be between 4
volts and 30 volts. The power supplies and resistors will be used to establish this voltage. An
ammeter will be used to measure the current in the temperature transducer.

The circuit must be able to measure temperatures in the range from 0°C to 100°C

because water is a liquid at these temperatures. Recall that the temperature in °C is equal to the
temperature in °K minus 273°.

State the Goal
Use the power supplies and resistors to cause the voltage, v, of the temperature transducer to
be between 4 volts and 30 volts.

Use an ammeter to measure the current, i, in the temperature transducer.

Generate a Plan

Model the power supply as an ideal voltage source and the temperature transducer as an ideal
current source. The circuit shown in Figure 2.11-2a causes the voltage across the temperature
transducer to be equal to the power supply voltage. Because all of the available power supplies
have voltages between 4 volts and 30 volts, any one of the power supplies can be used. Notice
that the resistors are not needed.

In Figure 2.11-26, a short circuit has been added in a way that does not disturb the
network. In Figure 2.11-2c, this short circuit has been replaced with an (ideal) ammeter.

Because the ammeter will measure the current in the temperature transducer, the ammeter
reading will be numerically equal to the temperature in °K.
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@ (b)

FIGURE 2.11-2 (a) Measuring temperature with a temperature sensor. (D) Adding a short circuit, (c)
Replacing the short circuit by an ammeter.

Although any ofthe available power supplies is adequate to meet the specifications, there
may still be an advantage to choosing a particular power supply. For example, it is reasonable
to choose the power supply that causes the transducer to absorb as little power as possible.

Act on the Plan
The power absorbed by the transducer is

p=v-I
where v is the power supply voltage. Choosing v as small as possible, 10 volts in this case,
makes the power absorbed by the temperature transducer as small as possible. Figure 2.11-3a
shows the final design. Figure 2.11-36 shows a graph that can be used to find the temperature
corresponding to any ammeter current.

Verify the Proposed Solution
Let’s try an example. Suppose the temperature of the water is 80.6°F. This temperature is
equal to 27°C or 300°K. The current in the temperature sensor will be

( ! )30°0K = 300 mA
Next, suppose that the ammeter in Figure 2.11-3a reads 300 /iA. A sensor current of 300
liA corresponds to a temperature of

= —MA = 300°K = 27°C = 80.6°F

°K
The graph in Figure 2.11-3b indicates that a sensor current of 300 /xA does correspond to a
temperature of 27°C.
This example shows that the circuit is working properly.

Ammeter reading,

(@ (b)

FIGURE 2.11-3 (a) Final design of a circuit that measures temperature with a temperature sensor, (b)
Graph of temperature versus ammeter current.

Q
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212 SUMMARY

O The engineer uses models, called circuit elements, to repre-
sent the devices that make up a circuit. In this book, we
consider only linear elements or linear models of devices. A
device is linear if it satisfies the properties of both superpo-
sition and homogeneity.

O The relationship between the reference directions of the
current and voltage of a circuit element is important. The
voltage polarity marks one terminal + and the other -. The
element voltage and current adhere to the passive conven-
tion if the current is directed from the terminal marked + to

the terminal marked -.

O Resistors are widely used as circuit elements. When the

resistor voltage and current adhere to the passive conven-
tion, resistors obey Ohm’s law; the voltage across the
terminals of the resistor is related to the current into the
positive terminal as v = Ri. The power delivered to a
resistance isp = iR = v2/R watts.

An independent source provides a current or a voltage
independent of other circuit variables. The voltage of an
independent voltage source is specified, but the current is
not. Conversely, the current of an independent current
source is specified whereas the voltage is not. The voltages
of independent voltage sources and currents of independent
current sources are frequently used as the inputs to electric
circuits.

PROBLEMS

Section 2,2 Engineering and Linear Models

P 2.2-1 An element has voltage v and current i as shown in
Figure P 2.2-1a. Values of the current i and corresponding
voltage v have been tabulated as shown in Figure P 2.2-1/?.
Determine whether the element is linear.

1 3 -3

v -2

0 0

12 2

32 4

) 60 6
(a) (b)

Figure P 2.2-1

P 2.2-2 A linear element has voltage vand current / as shown
in Figure P 2.2-2a. Values of the current i and corresponding
votage V have been tabulated as shown in Figure P 2.2-2b.
Represent the element by an equation that expresses V as a
function of/. This equation is a model ofthe element, (a) Verily

O A dependent source provides a current (or a voltage) that is
dependent on another variable elsewhere in the circuit. The
constitutive equations of dependent sources are summarized
in Table 2.7-1.

O The short circuit and open circuit are special cases of
independent sources. A short circuit is an ideal voltage source
having v(/) = 0. The current in a short circuit is determined by
the rest of the circuit. An open circuit is an ideal current source
having i(t) = 0. The voltage across an open circuit is determined
by the rest ofthe circuit. Open circuits and short circuits can also
be described as special cases of resistors. A resistor with
resistance R = 0 (G = oc) is a short circuit. A resistor with
conductance G = 0 (R = oc) is an open circuit.

O An ideal ammeter measures the current flowing through its
terminals and has zero voltage across its terminals. An ideal
voltmeter measures the voltage across its terminals and has
terminal current equal to zero. Ideal voltmeters act like open
circuits, and ideal ammeters act like short circuits.

O Transducers are devices that convert physical quantities,
such as rotational position, to an electrical quantity such as
voltage. In this chapter, we describe two transducers: poten-
tiometers and temperature sensors.

O Switches are widely used in circuits to connect and dis-
connect elements and circuits. They can also be used to
create discontinuous voltages or currents.

that the model is linear, (b) Use the model to predict the value
of vcorresponding to a current of/ = 40 mA. (c) Use the model
to predict the value of / corresponding to a voltage ofv= 3 V.

Hint: Plot the data. We expect the data points to lie on a
straight line. Obtain a linear model of the element by repre-
senting that straight line by an equation.

v,V i A
-3.6  -30
24 20
6.0 50
(a) <b)

Figure P 2.2-2

P 2.2-3 A linear element has voltage vand current / as shown
in Figure P 2.2-3a. Values of the current / and corresponding
voltage v have been tabulated as shown in Figure P 2.2-3b.
Represent the element by an equation that expresses v as a



function of /

This equation is a model of the element,

(a) Verify that the model is linear, (b) Use the model to predict

the value of v corresponding

the model to predict the value ofi corresponding

to a currentof/= OmA. (c) Use

to a voltage

ofv = 12 V.
Hint: Plot the data. W e expect the data points to lie on a
straight line. Obtain a linear model of the element by repre-
senting that straight line by an equation

Figure

P22-4 an

V, v I, mA
3.078 12
5.13 20

12.825 50
@

(b)

P 2.2-3

element is represented by the relation between
current and voltage as
v = 3/ + 5
Determine whether the element is linear
P22'5 The circuit shown in Figure P 2.2-5 consists of a

current source, a resistor, and element A .

Consider three cases

0.4 A (T |0n
Figure P 2.2-5
(a) W hen element A is a40-fl resistor, described by i= v /40,
then the circuit is represented by
0.4 =
Determine the values of v and i. Notice that the above
equation has a unique solution
(b) W hen element A is a nonlinear resistor described by
i = \2/2, then the circuit is represented by
v v2
04=to+t
Determine the values ofv and i. In this case, there are tw o
solutions ofthe above equation. Nonlinear circuits exhibit
more com plicated behavior than linear circuits.
(c) W hen element A is a nonlinear resistor described by i =

2
08+ v,

then the circuit is described by

04=- +°8+t

Show that thisequation has no solution. This result usually

indicates a modeling problem . At least one of the three

elements in the circuit has not been modeled accurately

Section 2.4 Resistors

P2.4-1 A currentsource and a resistor are connected in series

in the circuit shown in Figure P 2.4-1. Elements connected in
series have the same current, so i = isin this circuit. Suppose
that is = 3 A and R = 7 O. Calculate the voltage v across the
resistor and the power absorbed by the resistor.
Answer: v = 21 V and the resistor absorbs 63 W

Figure P 2.4-1

P2.4-2 A currentsource and a resistor are connected in series

in the circuit shown in Figure P 2.4-1. Elements connected in
series have the same current, so i = isin this circuit. Suppose
thati= 3 mA and v = 48 V Calculate the resistance R and the
power absorbed by the resistor.

P 2.4-3 A voitage source and a resistor are connected in
parallel in the circuit shown in Figure P 2.4-3. Elements
connected in parallel have the same voltage, so v = vs in
this circuit. Suppose thatvs= 10 V and R = 5 H. Calculate the

current i in the resistor and the power absorbed by the resistor.

Answer: i = 2 A and the resistor absorbs 20 W .
Figure P 2.4-3

P 2.4-4 A voitage source and a resistor are connected in
parallel in the circuit shown in Figure P 2.4-3. Elem ents
connected in parallel have the same voltage, so v = vs in
this circuit. Suppose that vs= 24 V and i = 3 A. Calculate the
resistance R and the power absorbed by the resistor

P 2.4-5 A voitage source and two resistors are connected in
parallel in the circuit shown in Figure P 2.4-5. Elem ents
connected in parallel have the same voltage, so vt = vs and
v2= vsin this circuit. Suppose thatvs= 150 V,R y= 50 fI, and
Ri= 25 n.Calculate the current in each resistor and the pow er
absorbed by each resistor.

Hint: Notice the reference directions of the resistor currents.
Answer: i} = 3 A and i2= —6 A. R\ absorbs 450 W and R 2
absorbs 900 W

Figure P 2.4-5
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P 2.4-6 A current source and two resistors are connected in
series in the circuit shown in Figure P 2.4-6. Elements
connected in series have the same current, so /', = /, and
i2 =i, in this circuit. Suppose that is = 25 mA, R\ = 4 Cl, and
R2 = 8 fi. Calculate the voltage across each resistor and the
power absorbed by each resistor.

Hint: Notice the reference directions of the resistor voltages.

"L+

Figure P 2.4-6

P 2.4-7 an

source and absorbs

electric heater is connected to a constant 250 -V
1COO W . Subsequently, this heater is con-
nected to a constant 220-V source. W hat power does it absorb

from the 220-V source? W hat is the resistance of the heater?
HiNt: m oder the etectric heater as a resistor

P2.4-8 theportable lighting equipment fora mine is located
Too meters from its dc supply source. The mine lights use a
total of5 kW and operate at 120 V dc. Determ ine the required
cross-sectional area of the copper wires used to connect the
source to the mine lights ifwe require that the power lost in the

copper wires be less than or equal to 5 percent of the power

required by the mine lights.
Hint: Model both the lighting equipmentand the wire as resistors

resistor

P 2.4-9 tne

the nominal resistance and the resistance tolerance as follow s

resistance of a practical depends on

I2nom (1 _

to0) - R- Raom{1+ Thro)

where Rnom is the nominal resistance and t is the resistance
tolerance expressed as a percentage. For example, a 100-0,
2 percent resistor will have a resistance given by

98f|<R<

102 0

The circuit shown in Figure P 2.4-9 has one input, vs, and one
output, vc. The gain of this circuit is given by
v0 R2
gam = —=
vs R\ + R2
Determine the range of possible values of the gain when Rj is
the resistance of a 100-0, 2 percent resistor and R2 is the
resistance of a 400-0, 5 percent resistor. Express the gain in
terms of a nominal gain and a gain tolerance.

..\ *

R2>VO0

Figure P2.a-9

P 2.4-10 The voltage source shown in Figure P 2.4-10 is an
adjustable dc voltage source. In other words, the voltage vsis a
constant voltage, but the value of that constant can be adjusted.
The tabulated data were collected as follows. The voltage, vs,
was set to some value, and the voltages across the resistor, va
and vb, were measured and recorded. Next, the value of vswas
changed, and the voltages across the resistors were measured
again and recorded. This procedure was repeated several
times. (The values of vs were not recorded.) Determine the
value of the resistance, R.

Va, v She oy

11.75 7.05
7.5 4.5

5.625 3.375
10 6

4 .375 2.625

Figure P 2.4-10

Section 2.5 Independent Sources

P 2.5-1 A current source and a voltage source are connected
in parallel with a resistor as shown in Figure P 2.5-1. All ofthe
elements connected in parallel have the same voltage, vsin this
circuit. Suppose that vs = 15 V, is= 3 A, and R = 5 O.
(a) Calculate the current i in the resistor and the power
absorbed by the resistor, (b) Change the current source current
to is= 5 A and recalculate the current, i, in the resistor and the
power absorbed by the resistor.

Answer: i = 3 A and the resistor absorbs 45 W both when
L=3Aand when z= 5A.

Figure P 2.5-1

P 2.5-2 A current source and a voltage source are connected
in series with a resistor as shown in Figure P 2.5-2. All of the
elements connected in series have the same current, z, in this
circuit. Suppose that vs = 10 \/, l,=3A and R = 5 0.
(a) Calculate the voltage v across the resistor and the power
absorbed by the resistor, (b) Change the voltage source voltage
to vs —5 V and recalculate the voltage, v, across the resistor
and the power absorbed by the resistor.

Figure P 2.5-2



P 2.5-3 The current source and voltage source in the circuit
shown in Figure P 2.5-3 are connected in parallel so that they
both have the same voltage, vs. The current source and voltage
source are also connected in series so that they both have the
same current, is. Suppose that vs= 12 VV and /s= 3 A. Calculate
the power supplied by each source.

Answer: The voltage source supplies -36 W, and the current
source supplies 36 W.

Figure P 2.5-3

P 2.5-4 The current source and voltage source in the circuit
shown in Figure P 2.5-4 are connected in parallel so that they
both have the same voltage, vs. The current source and voltage
source are also connected in series so that they both have the
same current, is. Suppose that vs= 12 VV and is= 2 A. Calculate
the power supplied by each source.

Figure P 2.5-4

P 2.5-5
(a) Find the power supplied by the voltage source shown in
Figure P 2.5-5 when for / > 0 we have
v=2costV
and
i — 10 cos / mA

(b) Determine the energy supplied by this voltage source for
the periord 0 < t < 1s.

Figure P 2.5-5

P 2.5-6 Figure P 2.5.6 shows a battery connected to a load.
The load in Figure P 2.5.6 might represent automobile head-
lights, a digital camera, or a cell phone. The energy supplied
by the battery to load is given by
w= f wvidt
N

When the battery voltage is constant and the load resistance is
fixed, then the battery current will be constant and

w=Vi(t2-fi)
The capacity of a battery is the product of the battery current
and time required to discharge the battery. Consequently, the

Problems -—- 47

energy stored in a battery is equal to the product of the battery
voltage and the battery capacity. The capacity is usually given
with the units of Ampere-hours (Ah). A new 12-V battery
having a capacity of 800 mAh is connected to a load that draws
a current of 25 mA. (a) How long will it take for the load to
discharge the battery? (b) How much energy will be supplied
to the load during the time required to discharge the battery?

battery load

Figure P 2.5-6

Section 2.6 Voltmeters and Ammeters
P 2.6-1 For the circuit of Figure P 2.6-1:

(a) What is the value of the resistance R?
(b) How much power is delivered by the voltage source?

12V

Figure P 2.6-1

P 2.6-2 The current source in Figure P 2.6-2 supplies 40 W.
What values do the meters in Figure P 2.6-2 read?

P 2.6-3 An ideal voltmeter is modeled as an open circuit. A
more realistic model of a voltmeter is a large resistance. Figure P
2.6-3tf shows a circuit with a voltmeter that measures the voltage
vimt In Figure P 2.6-3/>, the voltmeter is replaced by the model of
an ideal voltmeter, an open circuit. Ideally, there is no current in
the 100-1) resistor, and the voltmeter measures vmi = 12 V. the
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(a) Express the measurement error that occurs when Rm =
10 11 as a percent of *mi'

(b) Determine the maximum value of Rm required to ensure
that the measurement error is smaller than 5 percent.

ideal value of vm In Figure P 2.6-3<\ the voltmeter is modeled by
the resistance Rm Now the voltage measured by the voltmeter is

12
' Urn + 100j
Because Rm oo, the voltmeter becomes an ideal voltmeter, and

Mn_>Mni= 12V . When Rm< oo, the voltmeter is not ideal, and u
h . L [ J— oc__h Ammeter Q
vm< vm. The difference between vmand v is a measurement —
error caused by the fact that the voltmeter is not ideal. > 1kQ
N .
(a) Express the measurement error that occurs when Rm= 900 8 :
O as a percent of vmi.
(b) Determine the minimum value of Rmrequired to ensure that r
the measurement error is smaller than 2 percent ot vimi.
im=2 A
j ) 2A <l 1 kft
> W Q-
(b)
100 £2
Figure P 2.6-4
100 £ P 2.6-5 The voltmeter in Figure P 2.6-5a measures the

voltage across the current source. Figure P 2.6-5b shows
the circuit after removing the voltmeter and labeling the
voltage measured by the voltmeter as vm. Also, the other
element voltages and currents are labeled in Figure P 2.6-5b.

Figure P 2.6-3

P 2.6-4 An ideal ammeter is modeled as a short circuit. A
more realistic model of an ammeter is a small resistance. Figure P
2.6-4a shows a circuit with an ammeter that measures the current
V InFigure P 2.6-4b, the ammeter is replaced by the model ofan
ideal ammeter, a short circuit. Ideally, there is no voltage across
the 1-kfl resistor, and the ammeter measures /mi = 2 A, the ideal

value of im. In Figure P 2.6-4c, the ammeter is modeled by the 25Q iR
resistance Rm Now the current measured by the ammeter is e
—+ -
_ (1000
V1000 + tfn 12V(p i 2A0,,
T Hs "

As Rm-> 0, the ammeter becomes an ideal ammeter, and im—»

im= 2 A When Rm> 0, the ammeter is not ideal, and im < imi.

The difference between imana M iS « measvremene ErrOr (b)
caused by the fact that the ammeter is not ideal. Figure P 2.6-5



Given that
12=vr4vmand —/r —i$—2A

and
VR= 25/r

(a) Determine the value of the voltage measured by the meter.
(b) Determine the power supplied by each element.

P 2.6-6 The ammeter in Figure P 2.6-6a measures the current
in the voltage source. Figure P 2.6-6b shows the circuit after
removing the ammeter and labeling the current measured by
the ammeter as zm Also, the other element voltages and
currents are labeled in Figure P 2.6-6b.

Given that

2+im=zr and VR=vs= 12V
and
VvVR= 25/r

(a) Determine the value of the current measured by the meter.
(b) Determine the power supplied by each element.

(b)
Figure P 2.6-6

Section 2.7 Dependent Sources

P 2.7-1 The ammeter in the circuit shown in Figure P 2.7-1
indicates that 2= 2 A, and the voltmeter indicates that v =
8 V. Determine the value of r, the gain of the CCVS.

Answer: r —4 V/IA
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P 2.7-2 The ammeter in the circuit shown in Figure P 2.7-2
indicates that ia= 2 A, and the voltmeter indicates that vb =
8 V. Determine the value of g, the gain of the VCCS.

Answer: g = 0.25 AV

Figure P 2.7-2

P 2.7-3 The ammeters in the circuit shown in Figure P 2.7-3
indicate that ia= 32 A and 2= 8 A. Determine the value ofd,
the gain of the CCCS.

Answer: d —4 AlA

1312]-10]

P 2.7-4 The voltmeters in the circuit showii in Figure P 2.7-4
indicate that va= 2 VV and vb = 8 V. Determine the value of b,
the gain of the VCVS.

Answer: b —4 VIV
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P 2.7-5 The values of the current and voltage of each circuit

element are shown in Figure P 2.7-5.
Determine the values of the resistance, R, and of the

gain of the dependent source, A.
-2V+

12V

Figure P 2.7-5

P 2.7-6 Find the power supplied by the VCCS in Figure P 2.7-6.

Answer: 17.6 watts are supplied by the VCCS. (-17.6 watts
are absorbed by the VCCS.)

P 2.7-7 The circuit shown in Figure P 2.7.7 contains a

dependent source. Determine the value of the gain k of that
dependent source.

-10V

CDZSO mA

200 mA |

10Q

Figure P 2.7-7

P 2.7-8 The circuit shown in Figure P 2.7-8 contains a
dependent source. Determine the value of the gain k of that

dependent source.

P 2.7-9 The circuit shown in Figure P 2.7-9 contains a
dependent source. The gain of that dependent source is
k= 25h

Determine the value of the voltage vb.

vb

P 2.7-10 The circuit shown in Figure P 2.7-10 contains a
dependent source. The gain of that dependent source is

k ~ 90"{T = 009y
Determine the value of the current i/,



100Q 50 mA
— Wv '
+ va -~
M 10V 10Qi %V

Figure P 2.7-10

Section 2.8 Transducers

P 2.8-1 For the potentiometer circuit of Figure 2.8-2, the
current source current and potentiometer resistance are 1.1 mA
and 100 kH, respectively. Calculate the required angle, 0, so
that the measured voltage is 23 V.

P 2.8-2 An AD590 sensor has an associated constant k =
1  The sensor has a voltage v = 20 V; and the measured
current, i(t)yas shown in Figure 2.8-3, is4 [JJA<i< 13f.Aina
laboratory setting. Find the range of measured temperature.

Section 2.9 Switches

P 2.9-1 Determine the current, /, att= 1lsandatt= 4 s for
the circuit of Figure P 2.9-1.
/=2s

P 2.9-2 Determine the voltage, v, at/ = 1sandatt= 4 sfor
the circuit shown in Figure P 2.9-2.

P 2.9-3 Ideally, an open switch is modeled as an open circuit
and a closed switch is modeled as a closed circuit. More
realistically, an open switch is modeled as a large resistance,
and a closed switch is modeled as a small resistance.

Figure P 2.9-3a shows a circuit with a switch. In Figure
P 2.9-3b, the switch has been replaced with a resistance. In Figure
P 2.9-3b, the voltage v is given by

Ver + ooy
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Determine the value of v for each of the following cases.

(@) The switchis closed and Rs= 0 (a short circuit).
(b) The switchis closed and Rs=5 fl.

(c) The switchis open and Rs= oo (an opencircuit).
(d) The switchis open and Rs= 10 kft.

Figure P 2.9-3

Section 2-10 How Can We Check ...?

P 2.10-1 The circuit shown in Figure P 2.10-1 is used to test
the CCVS. Your lab partner claims that this measurement
shows that the gain of the CCVS is —20 V/A instead of +20
VI/A. Do you agree? Justify your answer.

P 2.10-2 The circuit of Figure P 2.10-2 is used to measure the
current in the resistor. Once this current is known, the resistance
can be calculated as R = §. The circuit is constructed using a
voltage source with vs= 12V and a 25-H, 1/2-W resistor. After a
puffofsmoke and an unpleasant smell, the ammeter indicates that
i = 0 A. The resistor must be bad. You have more 25-17, 1/2-W
resistors. Should you try another resistor? Justify your answer.

Figure P 2.10-2

Hint: 1/2-W resistors are able to safely dissipate one /2 W
of power. These resistors may fail if required to dissipate
more than 1/2 watt of power.
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Design Problems

DP 2-1 Specify the resistance R in Figure DP 2-1so that both
of the following conditions are satisfied:

1 i > 40 mA.

2. The power absorbed by the resistor is less than 0.5 W.

Figure DP 2-1

DP 2-2 Specify the resistance R in Figure DP 2-2 so that both
of the following conditions are satisfied:

1. v > 420 v

2. The power absorbed by the resistor is less than 15 W.

Figure DP 2-2

Hint: There is no guarantee that specifications can always be
satisfied.
DP 2-3 Resistors are given a power rating. For example,
resistors are available with ratings of 1/8 W, 1/4 W, 1/2 W,
and 1W. A 1/2-W resistor is able to safely dissipate 1/2 W of
power, indefinitely. Resistors with larger power ratings are more
expensive and bulkier than resistors with lower power ratings.
Good engineering practice requires that resistor power ratings be
specified to be as large as, but not larger than, necessary.
Consider the circuit shown in Figure DP 2-3. The values

of the resistances are
RX= 1000 N. R2= 2000 N, and /23 = 4000 11

The value of the current source current is
is = 30 m A

Specify the power rating for each resistor.

Figure DP 2-3
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31 INTRODUCTION
In this chapter, we will do the following:

Write equations using Kirchhoffs laws.

Not surprisingly, the behavior of an electric circuit is determined both by the types of
elements that comprise the circuit and by the way those elements are connected together. The
constitutive equations describe the elements themselves, and Kirchhoffs laws describe the way
the elements are connected to each other to form the circuit.

Analyze simple electric circuits, using only Kirchhoffs laws and the constitutive equations of the
circuit elements.

Analyze two very common circuit configurations: series resistors and parallel resistors.

We will see that series resistors act like a “‘voltage divider,”” and parallel resistors act like a 4current
divider.” Also, series resistors and parallel resistors provide our first examples ofan “equivalent circuit.”
Figure 3.1-1 illustrates this important concept. Here, a circuit has been partitioned into two parts, A and B.
Replacing B by an equivalent circuit, Z&g, does not change the current or voltage ofany circuit element in
part A. It is in this sense that B” is equivalent to B. We will see how to obtain an equivalent circuit when
part B consists either of series resistors or of parallel resistors.

Determine equivalent circuits for series voltage sources and parallel current sources.

Determine the equivalent resistance of a resistive circuit.

Often, circuits consisting entirely of resistors can be reduced to a single equivalent resistor by

repeatedly replacing series and/or parallel resistors by equivalent resistors.

3.2 KIRCHHOFF'S LAWS

An electric circuit consists of circuit elements that are connected together. The places where the
elements are connected to each other are called nodes. Figure 3.2-1a shows an electric circuit that ©

consists of six elements connected together at four nodes. It is common practice to draw electric



FIGURE 3.1-1 Replacing B by an
equivalent circuit, Beg, does not
change the current or voltage of
any circuit element in A.

circuits using straight lines and to position the elements horizontally or vertically as shown in Figure
3.2-1h.

The circuit is shown again in Figure 3.2-Ic, this time emphasizing the nodes. Notice that
redrawing the circuit, using straight lines and horizontal and vertical elements, has changed the way
that the nodes are represented. In Figure 3.2-la, nodes are represented as points. In Figures 3.2-1 b,c,
nodes are represented using both points and straight-line segments.

The same circuit can be drawn in several ways. One drawing of a circuit might look much
different from another drawing of the same circuit. How can we tell when two circuit drawings
represent the same circuit? Informally, we say that two circuit drawings represent the same circuit if

‘4
v5
+
06 “
(b)
-------------- Lrormmeeee 4
w -
- +
1 2] 2 B 3l 3 3
+ + FIGURE 3.2-1 (a) An electric

circuit. (b) The same circuit,
redrawn using straight lines and
horizontal and vertical elements,
(c) The circuit after labeling the
nodes and elements.
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corresponding elements are connected to corresponding nodes. More formally, we say that circuit
drawings A and B represent the same circuit when the following three conditions are met.

1. There is a one-to-one correspondence between the nodes of drawing A and the nodes of drawing
B. (A one-to-one correspondence is a matching. In this one-to-one correspondence, each node in
drawing A is matched to exactly one node of drawing B and vice versa. The position ofthe nodes is

not important.)
2. There is a one-to-one correspondence between the elements of drawing A and the elements of
drawing B.

3. Corresponding elements are connected to corresponding nodes.

Example 3.2-1 Different Drawings of the Same Circuit

Figure 3.2-2 shows four circuit drawings. Which of these drawings, if any, represent the same circuit as the circuit
drawing in Figure 3.2-Ic?

@ (b)

(c) (d)

FIGURE 3.2-2 Four circuit drawings.
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The circuit drawing shown in Figure 3.2-2a has five nodes, labeled r. s, t, u, and v. The circuit drawing in Hgure
3 2-1c has four nodes. Because the two drawings have different numbers of nodes, there cannot be a one-to-one
correspondence between the nodes of the two drawings. Hence, these drawings represent different circuits.

The circuit drawing shown in Figure 3.2-2b has four nodes and six elements, the same numbers of nodes and
elements as the circuit drawing in Figure 3.2-Ic. The nodes in Figure 3.2-2b have been labeled in the same way as the
corresponding nodes in Figure 3.2-lc. For example, node ¢ in Figure 3.2-2/? corresponds to node ¢ in Figure 3.2-lc.
The elements in Figure 3.2-2/? have been labeled in the same way as the corresponding elements in Figure 3.2-Ic. For
example, element 5 in Figure 3.2-2/) corresponds to element 5 in Figure 3.2-lc. Corresponding elements are indeed
connected to corresponding nodes. For example, element 2 is connected to nodes a and b, in both Figure 3.2-2b and in
Figure 3.2-lc. Consequently, Figure 3.2-2/? and Figure 3.2-Ic represent the same circuit.

The circuit drawing shown in Figure 3.2-2c has four nodes and six elements, the same number of nodes and
elements as the circuit drawing in Figure 3.2-Ic. The nodes and elements in Figure 3.2-2¢ have been labeled in the
same way as the corresponding nodes and elements in Figure 3.2-lc. Corresponding elements are indeed
connected to corresponding nodes. Therefore, Figure 3.2-2c and Figure 3.2-Ic represent the same circuit.

The circuit drawing shown in Figure 3.2-2d has four nodes and six elements, the same numbers of nodes and
elements as the circuit drawing in Figure 3.2-Ic. However, the nodes and elements of Figure 3.2-2d cannot be
labeled so that corresponding elements of Figure 3.2-Ic are connected to corresponding nodes. (For example, in
Figure 3.2-Ic, three elements are connected between the same pair of nodes, a and b. That does not happen in
Figure 3.2-2d.) Consequently, Figure 3.2-2d and Figure 3.2-lc represent different circuits.

FIGURE 3.2-3 Gustav
Robert Kirchhoff (1824-
1887). Kjrchhoff stated
two laws in 1847
regarding the current and
voltage in an electrical
circuit. Courtesy of

the Smithsonian
Institution.

In 1847, Gustav Robert Kirchhoff, a professor at the University of Berlin, formulated
two important laws that provide the foundation for analysis of electric circuits. These laws are
referred to as Kirchhoffs current law (KCL) and Kirchhoffs voltage law (KVL) in his honor.
Kirchhoffs laws are a consequence of conservation of charge and conservation of energy.
Gustav Robert Kirchhoff is pictured in Figure 3.2-3.

Kirchhoffscurrent law states that the algebraic sum ofthe currents entering any node is
identically zero for all instants of time.

Kirchhoffs current law (KCL): The algebraic sum of the currents into a node at
any instant is zero.

The phrase algebraic sum indicates that we must take reference directions into account as
we add up the currents of elements connected to a particular node. One way to take
reference directions into account is to use a plus sign when the current is directed away from
the node and a minus sign when the current is directed toward the node. For example,
consider the circuit shown in Figure 3.2-Ic. Four elements of this circuit—elements 1, 2, 3,
and 4—are connected to node a. By Kirchhoffs current law, the algebraic sum of the

element currents i2,13,and ;4must be zero. Currents i2 and /3are directed away from node a, so we
will use a plus sign for i2and <. In contrast, currents /, and iAare directed toward node a, so we will
use a minus sign for /1and /4. The KCL equation for node a of Figure 3.2-Ic is

—\+i2+h —n=0 (3.2-1)

An”~ mate~ ofobtaining the algebraic sum of the currents into a node is to set the sum ofall

he currents directed away from the node equal to the sum ofall the currents directed toward that node,
sing this technique, we find that the KCL equation for node a of Figure 3.2-Ic is

2+ 10= 11+14 (3 2->)

Clearly. Egs. 3.2-1 and 3.2-2 are equivalent.
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Similarly, the Kirchhoffs current law equation for node b of Figure 3.2-1c is
\—h+h+%

Before we can state Kirchhoffs voltage law, we need the definition of a loop. A loop is a closed
path through a circuit that does not encounter any intermediate node more than once. For example,
starting at node a in Figure 3.2-Ic, we can move through element 4 to node c, then through element 5to
node d, through element 6 to node b, and finally through element 3 back to node a. We have a closed
path, and we did not encounter any of the intermediate nodes—b, ¢, or d—more than once.
Consequently, elements 3, 4, 5, and 6 comprise a loop. Similarly, elements 1, 4, 5, and 6 comprise
a loop ofthe circuit shown in Figure 3.2-Ic. Elements 1and 3 comprise yet another loop of this circuit.
The circuit has three other loops: elements 1and 2, elements 2 and 3, and elements 2, 4, 5, and 6.

We are now ready to state Kirchhoffs voltage law.

Kirchhoffs voltage law (KVL): The algebraic sum of the voltages around any loop in a
circuit is identically zero for all time.

The phrase algebraic sum indicates that we must take polarity into account as we add up the voltages
of elements that comprise a loop. One way to take polarity into account is to move around the loop in
the clockwise direction while observing the polarities of the element voltages. We write the voltage
with a plus sign when we encounter the + ofthe voltage polarity before the — In contrast, we write the
voltage with a minus sign when we encounter the —ofthe voltage polarity before the +. For example,
consider the circuit shown in Figure 3.2-Ic. Elements 3, 4, 5, and 6 comprise a loop of the circuit. By
Kirchhoffs voltage law, the algebraic sum of the element voltages v3, v4, v5, and v6 must be zero. As
we move around the loop in the clockwise direction, we encounter the + of v4before the — the —ofv5
before the +, the —ofv6before the +, and the —of v3before the +. Consequently, we use a minus sign
for v3, v5, and v6 and a plus sign for v4. The KCL equation for this loop of Figure 3.2-Ic is

V4 —5—v6—Vv3=10

Similarly, the Kirchhoffs voltage law equation for the loop consisting of elements 1, 4, 5, and 6 is
V4- v5—v6+ vj =0

The Kirchhoffs voltage law equation for the loop consisting of elements 1 and 2 is

—2-fvj=0

Consider the circuit shown in Figure 3.2-4a. Determine the power supplied by element C and the power received
by element D.

Solution
Figure 3.2-40 provides a value for the current in element C but not for the voltage, v, across element C. The voltage
and current ot element C given in Figure 3.2-4a adhere to the passive convention, so the product of this voltage and
current is the power received by element C. Figure 3.2-4a provides a value for the voltage across element D but not for
the current, /, in element D. The voltage and current of element D given in Figure 3.2-4a do not adhere to the passive
convention, so the product of this voltage and current is the power supplied by element D.

We need to determine the voltage, v, across element C and the current, i, in element D. We will use KirchhofFs
laws to determine values of v and /. First, we identify and label the nodes of the circuit as shown in Figure 3.2-4b.
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+ 4 V-
110A
(a)
+
6V 110A
FIGURE 3.2-4 (a) The circuit considered in Example
d 3.2-2 and (b) the circuit redrawn to emphasize the
(b) nodes.

Apply Kirchhoffs voltage law (KVL) to the loop consisting of elements C, D, and B to get
—v—(—4) —6=0=>v= 2V

The value ofthe current in element C in Figure 3.2-4b is 7 A. The voltage and current ofelement C given in Figure
3.2-4b adhere to the passive convention, so
Pc=v(7)=(- 2)(7)= —14W
is the power received by element C. Therefore, element C supplies 14 W.
Next, apply Kirchhoffs current law (KCL) at node b to get
7+ (-10) +z=0 == i= 3A
The value ofthe voltage across element D in Figure 3.2-4bis -4 V. The voltage and current ofelement D given in
Figure 3.2-46 do not adhere to the passive convention, so the power supplied by element D is given by
Pd = (-4)/=(-4)(3) = —12W
Therefore, element D receives 12 W.

Example 3.2-3 Ohm’s and Kirchhoff’s Laws

Consider the circuit shown in Figure 3.2-5. Notice that the passive convention was used to assign reference
directions to the resistor voltages and currents. This anticipates using Ohm’s law. Find each current and
each voltage when /2, =8 SI, v2=-10 V, /3= 2 A, and R3= | ft. Also, determine the resistance R2

Solution
The sum of the currents entering node a is

N—2—-13=0
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Using Ohm’s law for R3, we find that
v3= R)h = 12 = 2V
Kirchhoffs voltage law for the bottom loop incorporating vb v3, 12V
and the 10-V source is
-10+ W+ v3=0

Therefore. vi= 10—v3= 8V
Ohm’s law for the resistor Ri is 10V
vi = R\i\
or h —vi/?i = 8/8 = 1A
Next, apply Kirchhoffs current law at node a to get FIGURE 3.2-5 Circuit with two
2—i\ —i3= 1—2=—1A constant-voltage sources.
We can now find the resistance R2 from
\£ = Rih
or Ri —Vijii ——10/— = 100
Example 3.2-4 Ohm’s and £ INTERACTIVE EXAMPLE

Kirchhoff’s Laws

Determine the value of the current, in amps, measured by the ammeter in Figure 3.2-6a.

Solution
An ideal ammeter is equivalent to a short circuit. The current measured by the ammeter is the current in the short
circuit. Figure 3.2-6b shows the circuit after replacing the ammeter by the equivalent short circuit.

The circuit has been redrawn in Figure 3.2-7 to label the nodes of the circuit. This circuit consists of a
voltage source, a dependent current source, two resistors, and two short circuits. One of the short circuits is the
controlling element of the CCCS, and the other short circuit is a model of the ammeter.

4Q

41| b 2Q <t
2V -VW—9c¢
+ 2im -

FIGLRt 3.2-6 (a) A circuit with dependent source and an
ammeter, (b) The equivalent circuit after replacing the ammeter ~ FIGURE 3.2-7 The circuit of Figure 3.2-6 after labeling the
by a short circuit. nodes and some element currents and voltages.
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Applying KCL twice, once at node d and again at node a, shows that the current in the voltage source and the
current in the 4-0 resistor are both equal to «.. These currents are labeled in Figure 3.2-7. Applying KCL again, at
node ¢ shows that the current in the 2-11 resistor is equal to im. This current is labeled  Figure 3.2-7.

Next, Ohm’s law tells us that the voltage across the 4-0 resistor is equal to 4/,, and that the voltage across the
2-0 resistor is equal to 2im. Both of these voltages are labeled in Figure 3.2-7.

Applying KCL at node b gives

fa 3/a Pm 0

Applying KVL to closed path a-b-c-e-d-a gives

0= 4ad-2rm—12 = —4 +2/m—I12 = 3Im—12
Finally, solving this equation gives .
Im=4A
Example 3.2-5 Ohm’s and A INTERACTIVE EXAMPLE

Kirchhoff’s Laws

Determine the value of the voltage, in volts, measured by the voltmeter in Figure 3.2-8a.

4a S5a

FIGURE 3.2-8 (a) A circuit with dependent source and a
voltmeter. (b) The equivalent circuit after replacing the

voltmeter by an open circuit. FIGURE 3.2-9 The circuit of Figure 3.2-8b after labeling the

nodes and some element currents and voltages.

Solution
An ideal voltmeter is equivalent to an open circuit. The voltage measured by the voltmeter is the voltage across the
open circuit. Figure 3.2-Sb shows the circuit after replacing the voltmeter by the equivalent open circuit

The circuit has been redrawn in Figure 3.2-9 to label the nodes of the circuit. This circuit consists of a
voltage source, a dependent voltage source, two resistors, a short circuit, and an open circuit The short circuit is
the contro ling element of the CCVS, and the open circuit is a model of the voltmeter

Applying KCL twice, once at node d and again at node a, shows that the current in the voltage source and the
current m.he 4-(1 resisror are both equal These current* are labeled in F.gure 3.2-9. Applying KCL again!«
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node c, shows that the current in the 5-0 resistor is equal to the current in the open circuit, that is, zero. This
current is labeled in Figure 3.2-9. Ohm’s law tells us that the voltage across the 5-fl resistor is also equal to zero.
Next, applying KVL to the closed path b-c-f-e-b gives vm= 3/a.

Applying KVL to the closed path a-b-e-d-a gives

—4ia+ 3/a—12 —0
S0 fa=-12 A

Finally
V= 3/a= 3(—12) = -36 V

EXERCISE 3.2-1  Determine the values of 3, i4, i6>v2, v4, and v6 in Figure E 3.2-1.

Answer: i$=—3A,i4=3A, /6=4A v2=—-3V,va= -6V, v6=6V
+ 3V-

3V

VA FIGURE E 3.2-1

3.3 SERIES RESISTORS AND VOLTAGE DIVISION

Let us consider a single-loop circuit, as shown in Figure 3.3-1. In anticipation of using Ohm's
law, the passive convention has been used to assign reference directions to resistor voltages
and currents.
The connection of resistors in Figure 3.3-1 is said to be a series connection because
all the elements carry the same current. To identify a pair of series elements, we look for
two elements connected to a single node that has no other elements connected to it. Notice,
for example, that resistors ft, and R2 are both connected to node b and that no other
circuit elements are connected to node b. Consequently, /, = i2, so both resistors have the ~FIGURE 3.3-1
same current. A similar argument shows that resistors R2 and R3 are also connected in  Single-loop circuit with a
series. Noticing that R2 is connected in series with both R\ and R"%we say that all three voltage source vs.
resistors are connected in series. The order of series resistors is not important. For
example, the voltages and currents of the three resistors in Figure 3.3-1 will not change if
we interchange the positions R2 and R3.
Using KCL at each node of the circuit in Figure 3.3-1, we obtain

a: =0\
b: /1= i2
c: i2=nh
d: 8= is

Consequently, U= .i\ = h—h
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To determine jj, we use KVL around the loop to obtain
Vi -FVR-h\W—vs=0

where, for example, v, is the voltage across the resistor R{. Using Ohm’s law for each resistor,

R\i\ + Rzh + - vs= 0 =% R\i\ +Rii\ + Rii\ = vs
Solving for  we have . Vs
R\ + Ri + Ry

Thus, the voltage across the nth resistor Rn is v,, and can be obtained as

_*p Vej?!
v *" 2, +R2+R3

For example, the voltage across resistor R2 is

R2
V2 [?, + R2+ R} \

Thus, the voltage across the series combination of resistors is divided up between the individual
resistors in a predictable way. This circuit demonstrates the principle of voltage division, and the
circuit is called a voltage divider.

In general, we may represent the voltage divider principle by the equation

R
R\ 4-R2 4- «*4-Rn

where vn is the voltage across the nth resistor of N resistors connected in series.

We can replace series resistors by an equivalent resistor. This is illustrated in Figure 3.3-2. The
series resistors R\, R2, and R3 in Figure 3.3-2a are replaced by a single, equivalent resistor Rs in Figure
3.3-2b. Rsis said to be equivalent to the series resistors R {, R2, and R3when replacing R},R2, and R3 by Rs
does not change the current or voltage of any other element of the circuit. In this case, there is only one
other element in the circuit, the voltage source. We must choose the value of the resistance Rs so that
replacing R UR2, and R3 by Rswill not change the current of the voltage source. In Figure 3.3-2a, we have

i v*
R\ + R2+ R3

In Figure 3.3-2b, we have

Because the voltage source current must be the same in both circuits, we require that

Rs=R\ + R2+ R3
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In general, the series connection of N resistors having resistances Ru R2 me+ Rn is equivalent to the
single resistor having resistance

Rs = R\ 4 R24- **4-Rn

Replacing series resistors by an equivalent resistor does not change the current or voltage of any other

element of the circuit.
Next, let’s calculate the power absorbed by the series resistors in Figure 3.3-2a:

p = is2R\ 4 "2 + h~Ri
Doing a little algebra gives
P —is\R\ 4 ™2 4-Ri) = U-Rs

which is equal to the power absorbed by the equivalent resistor in Figure 3.3-2b. We conclude
that the power absorbed by series resistors is equal to the power absorbed by the equivalent

resistor.

Example 3.3-1 Voltage Divider

Let us consider the circuit shown in Figure 3.3-3 and determine the resistance R2 required so that the voltage
across R2 will be 1/4 of the source voltage when ~=9 (1. Determine the current i when vs= 12 V.

i *]

"1
v2>R2

FIGURE 3.3-3 Voltage divider circuit with R\ = 9 Q..

Solution
The voltage across resistor R2 will be
- .Re

R1+ /2 "
Because we desire v2/vs= 1/4, we have

Ri 1

R\ + 4

or R1= 3?72

Because «, = 9fi,we require that R2= 3 Cl. Using KVL around the loop, we have

vs-fvi-hv2=0
or vs = zR\ + iR2
s 12

Therefore, 1A (3.3-1)

RU+R2 9-f3_
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Example 3.3-2 Series Resistors

For the circuit of Figure 3.3-4a, find the current measured by the ammeter. Then show that the power absorbed by
the two resistors is equal to that supplied by the source.

() (b)
FIGURE 3.3-4 (a) A circuit containing series resistors. (b) The circuit after the ideal ammeter has been replaced by the equivalent
short circuit, and a label has been added to indicate the current measured by the ammeter, im.

Solution
Figure 3.3-4b shows the circuit after the ideal ammeter has been replaced by the equivalent short circuit and a

label has been added to indicate the current measured by the ammeter, im. Applying KVL gives

15 4" 5zm -h 10/n

The current measured by the ammeter is

15
m=—1A
5+10

(Why is 2nnegative? Why can’t we just divide the source voltage by the equivalent resistance? Recall that when
we use Ohm's law, the voltage and current must adhere to the passive convention. In this case, the current
calculated by dividing the source voltage by the equivalent resistance does not have the same reference direction
as im, so we need a minus sign.)
The total power absorbed by the two resistors is
pr = 5/m2+ 10/m2= 15(12) = 15W

The power supplied by the source is
Ps = —vs/m= —15(—1) = 15W

Thus, the power supplied by the source is equal to that absorbed by the series connection of resistors.

Example 3.3-3 Voltage Divider Design )-

The input to the voltage divider in Figure 3.3-5 is the voltage, v,, of the voltage source. The output is the voltage

v measured by the voltmeter. Design the voltage divider; that is, specify values of the resistances, /?, and R, to
satisfy both of these specifications. 2

Specification 1: The input and output voltages are related by vo= 0.8 vs.

pis”fr=20ve Breqgi"r'd“ “ PPy "° mOre ,han * mW 0f POWer When ,he #
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nm

© Voltmeter q

Voltage Divider FIGURE 3.3-5 A voltage divider.

Solution
We’ll examine each specification to see what it tells us about the resistor values.

Specification 1: The input and output voltages of the voltage divider are related by

Ri
R1+R2
So specification 1 requires Ri
=08 = R2=4
R\ +R:

Specification 2: The power supplied by the voltage source is given by

= IS\ = / VS \j\$=_V'2
B + Ri

So specification 2 requires

20
0.001 > Ri+Ri> 400 x 103= 400 kn
R\ + R2

Combining these results gives
5Rt > 400 kQ

The solution is not unique. One solution is
Rt = 100kfl and«2=400k0

EXERCISE 3.3-1 Determine the voltage measured by the voltmeter in the circuit shown in
Figure E 3.3-la.

Hint: Figure E 3.3-16 shows the circuit after the ideal voltmeter has been replaced by the equivalent
open circuit and a label has been added to indicate the voltage measured by the voltmeter, vm.

Answer: vm= 2V

FIGURE E 33-1 (a) A voltage divider. (b) The voltage divider after the ideal voltmeter has been replaced by the
equivalent open circuit and a label has been added to indicate the voltage measured by the voltmeter, vm
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EXERCISE 3.3-2 Determine the voltage measured by the voltmeter in the circuit shown in
Figure E 33-2a.

FIGURE E 3.3-2 (a) A voltage divider. (b) The voltage divider after the ideal voltmeter has been replaced by the
equivalent open circuit and a label has been added to indicate the voltage measured by the voltmeter, vm

Hint: Figure E 3.3-2b shows the circuit after the ideal voltmeter has been replaced by the equivalent
open circuit and a label has been added to indicate the voltage measured by the voltmeter, vm.

Answer: vm= 2V

34 PARALLEL RESISTORS AND CURRENT DIVISION --mmmemmmm

Circuit elements, such as resistors, are connected in parallel when the voltage across each element is
identical. The resistors in Figure 3.4-1 are connected in parallel. Notice, for example, that resistors R\
and R2 are each connected to both node a and node b. Consequently, v{= v2, so both resistors have the
same voltage. A similar argument shows that resistors R2 and R3 are also connected in parallel.
Noticing that R2 is connected in parallel with both R\ and R$, we say that all three resistors are
connected in parallel. The order of parallel resistors is not important. For example, the voltages and
currents of the three resistors in Figure 3.4-1 will not change if we interchange the positions R2and R3.

The defining characteristic of parallel elements is that they have the same voltage. To identify
a pair of parallel elements, we look for two elements connected between the same pair of nodes.

Consider the circuit with two resistors and a current source shown in Figure 3.4-2. Note that
both resistors are connected to terminals a and b and that the voltage v appears across each parallel
element. In anticipation of using Ohm s law, the passive convention is used to assign reference
directions to the resistor voltages and currents. We may write KCL at node a (or at node b) to obtain

is—i\—h =0
or
h=i\l+ =
However, from Ohm’s law
Vioand 2=V
b e 0---------

figure 3.4-1 A circuit with parallel res.stors. FIGURE 3.4-2 Parallel circuit with a current source.
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Then
(3.4-1)

Recall that we defined conductance G as the inverse of resistance R. We may therefore rewrite Eq.
34-1 as
i8= G\v-1G2v = (G\ 4 G2)v (3.4-2)

Thus, the equivalent circuit for this parallel circuit is a conductance Gp, as shown in
Figure 3.4-3, where

Gp—G\ 4- G2
The equivalent resistance for the two-resistor circuit is found from FIGURE 3.4-3
Equivalent circuit for a
Gr=T . +-k parallel circuit.
Because Gp= 1/Rp, we have
11 J_
Fp~T]+T2
or
R - R'RI (3.4-3)
p~RI+R2

Note that the total conductance, Gp, increases as additional parallel elements are added and that the
total resistance, Rp, declines as each resistor is added.
The circuit shown in Figure 3.4-2 is called a current divider circuit because it divides the source

current. Note that
ii = Gl (3.4-4)
Also, because is= (G\ -f G2)v, we solve for v, obtaining

h

Gi+ G2 (3:4-5)

Substituting v from Eq. 3.4-5 into Eq. 3.4-4, we obtain

G\h
G\ 4 G2 (3.4-6)
G2h

Similarly,
Gj 4 G2

Note that we may use G2—\/R2and Ci = |//?i to obtain the current i2 in terms of two resistances as
follows:

Rii
D= i,
R\ -f R2

Thle current of the source divides between conductances Gj and G2 in proportion to their conductance
values.
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Let us consider the more general case of current division with a set of TVparallel conductors as
shown in Figure 3.4-4. The KCL gives

. iS*h+ 2 + %3+ e*+m (
i
I : I for which .
I ! In-"Gnv (3.4-8)
o—VW*“4 forn=1 ...,N We may write Eq. 3.4-7 as
is= (Gi-h 2 + G~ eoesr (3.4-9)
Therefore,
h=v52g* (3.4-10)
n—1

Because in= Gn\\ we may obtain v from Eq. 3.4-10 and substitute it in Eq. 3.4-8, obtaining
'\(IBnis (3.4-11)

G,
n—

In =

FIGURE 3.4-4 Recall that the equivalent circuit. Figure 3.4-12, has an equivalent conductance Gp such that

Set of N parallel N
conductances Gp—" Gn (3.4-12)
with a current n=1
source L. Therefore,
1>
e (3.4-13)

which is the basic equation for the current divider with N conductances. Of course, Eq. 3.4-12 can be
rewritten as

- =y - (3.4-14)

Example 3.4-1 Parallel Resistors

For the circuit in Figure 3.4-5, find (a) the current in each
branch, (b) the equivalent circuit, and (c) the voltage v. The
resistors are

FIGURE 3.4-5 Parallel circuit for Example 3.3-2.

Solution
The current divider follows the equation
Gn
In ——-%rh
p
so it is wise to find the equivalent circuit, as shown in 28 A(T
Figure 3.4-6, with its equivalent conductance Gp. We have
W FIGURE 3.4-6 Equivalent circuit for the parallel circuit

Gp=2_"Gn=G\+ G2+ G3=2+4+8= 14S ofFigure 34'5-
n=1
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Recall that the units for conductance are siemens (S). Then
£(28)-4 A

G2is _ 4(28) _
Similarly, 14

and /3= 8§ N = 16A

Because i,,= Grnv, we have

Example 3.4-2 Parallel Resistors INTERACTIVE EXAMPLE

For the circuit of Figure 3.4-7a, find the voltage measured by the voltmeter. Then show that the power absorbed by
the two resistors is equal to that supplied by the source.

FIGURE 3.4-7 (a) A circuit containing parallel resistors.
(b) The circuit after the ideal voltmeter has been replaced by
8Q the equivalent open circuit and a label has been added to
indicate the voltage measured by the voltmeter, vm (c) The
circuit after the parallel resistors have been replaced by an
(b) (c) equivalent resistance.

Solution

Figure 3.4-76 shows the circuit after the ideal voltmeter has been replaced by the equivalent open circuit, and a
label has been added to indicate the voltage measured by the voltmeter, vm. The two resistors are connected in
parallel and can be replaced with a single equivalent resistor. The resistance of this equivalent resistor is
calculated as

40- 10

- 8(1
40+ 10

Figure 3.4-7c shows the circuit after the parallel resistors have been replaced by the equivalent resistor. The
current in the equivalent resistor is 250 mA, directed upward. This current and the voltage vmdo not adhere to the
passive convention. The current in the equivalent resistance can also be expressed as -250 mA, directed
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downward. This current and the voltage vm do adhere to the passive convention. Ohm’s law gives
vm= 8(—0.25) = -2V

The voltage vm in Figure 3.4-7/? is equal to the voltage vm in Figure 3.4-7c. This is a consequence of the
equivalence ofthe 8-0 resistor to the parallel combination ofthe 40-H and 10-ft resistors. Looking at Figure 3.4-

1b, we seethat the power absorbed by the resistors is
v2 v2 22 22
Pr ‘4 0 ‘ 10 40 10

The voltage vmandthe current of the current sourceadhere to the passive convention, so
Ps = vm(0.25) = (-2)(0.25) = -0.5 W

is the power received by the current source. The current source supplies 0.5 W.
Thus, the power absorbed by the two resistors is equal to that supplied by the source.

Example 3.4-3 Current Divider Design

The input to the current divider in Figure 3.4-8 is the current, is, of the current source. The output is the current, i0,
measured by the ammeter. Specify values of the resistances, R\ and R2, to satisfy both of these specifications:

0——f-\NA T -© Ammeter ©

is©

Current Divider FIGURE 3.4-8 A current divider circuit.

Specification 1. The input and output currents are related by /0= 0.8 is.

Specification 2: The current source is required to supply no more than 10 mW of power when the input to the
current divider is /, = 2 mA.

Solution

We’ll examine each specification to see what it tells us about the resistor values.
Specification 1: The input and output currents of the current divider are related by

n2
R\ + R2
So specification 1 requires
*2
RU+ry W8 RZ=4RL

Specification 2: The power supplied by the current source is given by

Ps  hvs rsifs RIR2 12/ AR
R\ + R2 R\+R2
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So specification 2 requires
0.01 >(0.002):( ~ ) « srrk™~soo

Combining these results gives

R] < 2500 ZR\<2500 =* /f, <3125 0O
1?77 + 4R2 ~ 5

The solution is not unique. One solution is

[?i=3k0O and Ri = 12ki2

EXERCISE 3.4-1 A resistor network consisting of parallel resistors is shown in a package
used for printed circuit board electronics in Figure E 3.4-1a. This package is only 2 cm x 0.7 cm,
and each resistor is 1 kfl. The circuit is connected to use four resistors as shown in Figure E 3.4-16.
Find the equivalent circuit for this network. Determine the current in each resistor when is= 1 mA.

FIGURE E 3.4-1
(a) A parallel resistor
network. Courtesy of
Dale Electronics.

(b) The connected
circuit uses four
resistors where R =

@ (b) 1 kH.

Answer: Rp=250 1)

EXERCISE 3.4-2 Determine the current measured by the ammeter in the circuit shown in
Figure E 3.4-2a.

FIGURE E 3.4-2 (a) A current divider. (b) The
current divider after the ideal ammeter has been
replaced by the equivalent short circuit and a label
has been added to indicate the current measured by
the ammeter. zm
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Hint: Figure E 3.4-2/) shows the circuit after the ideal ammeter has been replaced by the equivalent
short circuit, and a label has been added to indicate the current measured by the ammeter, im.

Answer: im= —1 A

3.5 SERIES VOLTAGE SOURCES AND
PARALLEL CURRENT SOURCES

Voltage sources connected inseries are equivalent to a singlevoltagesource. The voltage of the
equivalentvoltage source is equal tothe algebraic sum of voltages of theseries voltage sources.
Consider the circuit shown in Figure 3.5-la. Notice that the currents of both voltage sources are

equal. Accordingly, define the current, is, to be

is="a="% (3.5-1)
Next, define the voltage, vs, to be

Vs = Va-I- Vb (3.5-2)

Using KCL, KVL, and Ohm’s law, we can represent the circuit in Figure 3.5-1a by the equations

<A F (3.5-3)
v2 .

' 3.5-4

,S- N +i3 ( )

Ve = v, (3.5-5)

V] = vS+ V2 (3.5-6)

v2 = i}R} (3.5-7)

where is—i3=iband vs= va+ vh. These same equations result from applying KCL, KVL, and Ohm’s
law to the circuit in Figure 3.5-16. If js= ja= /b and vs= va + vb, then the circuits shown in Figures
3.5-la and 3.5-16 are equivalent because they are both represented by the same equations.

For example, suppose that /c= 4 A, = 2 ft, R2=6 ft, R3=3ft, va= 1V, and vb= 3V. The
equations describing the circuit in Figure 3.5-la become

4 =" + s (3.5-8)

h=2? +13 (3.5-9)

(a)

FIGURE 3.5-1 {a) A circuit containing
voltage sources connected in series and
(b) an equivalent circuit.
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Table 3 5-1 Parallel and Series Voltage and Current Sources

EQUIVALENT CIRCUIT
CIRCUIT EQUIVALENT CIRCUIT CIRCUIT Q
va+ b
O *0'9D CH-0-0
va b Va~vb i+ %
0 -0 —AN -0 —° 0-0-0
a s}
Not allowed
CD 'a'l
Not allowed
VC = Vi
Vvj =4+ V2
v2= 3/3

The solution to this set ofequationsisM = 6V, is= 1A,i3= 0.66 A, v2= 2V, and vc= 6 V. Egs.
3.5-8 to 3.5-12 also describe the circuit in Figure 3.5-16. Thus, vj =6 V, is= 1A, 3= 0.66 A,
v2= 2V, and vc= 6 V in both circuits. Replacing series voltage sources by a single, equivalent
voltage source does not change the voltage or current of other elements of the circuit.

Figure 3.5-2a shows a circuit containing parallel current sources. The circuit in Figure
3.5-2b is obtained by replacing these parallel current sources by a single, equivalent current
source. The current of the equivalent current source is equal to the algebraic sum of the currents
of the parallel current sources.

We are not allowed to connect independent current sources in series. Series elements have
the same current. This restriction prevents series current sources from being independent.
Similarly, we are not allowed to connect independent voltage sources in parallel.

Table 3.5-1 summarizes the parallel and series connections of current and voltage sources.

36 CIRCUIT ANALYSIS

In this section, we consider the analysis of a circuit by replacing a set of resistors with an
equivalent resistance, thus reducing the netw'ork to a form easily analyzed.

Consider the circuit shown in Figure 3.6-1. Note that it includes a set of resistors that is in
series and another set of resistors that is in parallel. It is desired to find the output voltage VO, so
we wish to reduce the circuit to the equivalent circuit shown in Figure 3.6-2.

(b)
FIGURE 3.5-2
(@) A circuit
containing parallel
current sources and (6)
an equivalent circuit.
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*2 *3

FIGURE 3.6-2 Equivalent circuit for the circuit of

FIGURE 3.6-1 Circuit with a set of series resistors and i
Figure 3.6-2.

a set of parallel resistors.

We note that the equivalent series resistance is
Rs= R\ + R2-f~3

and the equivalent parallel resistance is

* . <@p
where = G4+ G5-f G6
Then, using the voltage divider principle, with Figure 3.6-2, we have
Rp
V' Rs+RpW

Replacing the series resistors by the equivalent resistor Rs did not change the current or voltage of
any other circuit element. In particular, the voltage vGdid not change. Also, the voltage vGacross the
equivalent resistor Rpis equal to the voltage across each of the parallel resistors. Consequently, the
voltage vGin Figure 3.6-2 is equal to the voltage vGin Figure 3.6-1. We can analyze the simple
circuit in Figure 3.6-2 to find the value of the voltage vGand know that the voltage vQin the more
complicated circuit shown in Figure 3.6-1 has the same value.

Example 3.6-1 Series and Parallel Resistors

Consider the circuit shown in Figure 3.6-3. Find the current ix when
R4=2fl and R2= R3—8fl

© »3Q >9£2 18 £2

*3

180

© (b)
FIGURE 3.6-3 (a) Circuit for Example 3.6-1. (b) Partially reduced circuit for Example 3.6-1.

Solution

Because the objective is to find iu we will attempt to reduce the circuit so that the 341 resistor is in parallel with
one resistor and the current source is. Then we can use the current divider principle to obtain /,. Because /?, and /?,
are in parallel, we find an equivalent resistance as

*2*3

Rp\ = =40
*2+*3
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FIGURE 3.6*4 Equivalent circuit for Figure 3.6-3.

This equivalent resistor is connected in series with R4. Then adding Rp\ to R4, we have a series equivalent resistor
i%="4+ [pl=2 +4=6n
Now the Rsresistor is in parallel with three resistors as shown in Figure 3.6-3b. However, we wish to obtain the

equivalent circuit as shown in Figure 3.6-4 so that we can find iV Therefore, we combine the 9-0 resistor, the
18-0 resistor, and Rsshown to the right of terminals a-b in Figure 3.6-36 into one parallel equivalent conductance

Gp2. Thus, we find
1 1 11 1 1 1
G2=9+18+" “9+T8+6"3S
Then, using the current divider principle,

Gl
N =
where jp=Q\+GR= —. _
Therefore,
1/3.
11=2/3 5

Example 3.6-2 Equivalent Resistance

The circuit in Figure 3.6-5a contains an ohmmeter. An ohmmeter is an instrument that measures resistance in
ohms. The ohmmeter will measure the equivalent resistance of the resistor circuit connected to its terminals.
Determine the resistance measured by the ohmmeter in Figure 3.6-5a.

Solution

Working from left to right, the 30-0 resistor is parallel to the 60-0 resistor. The equivalent resistance is
60 ‘30
== X =2
60 + 30 00

In Figure 3.6-56, the parallel combination of the 30-0 and 60-11 resistors has been replaced with the equivalent
20-0 resistor. Now the two 20-0 resistors are in series.
The equivalent resistance is

204-20=400
In Figure 3,6-5c, the series combination of the two 20-0 resistors has been replaced with the equivalent 40-0
resistor. Now the 40-0 resistor is parallel to the 10-0 resistor. The equivalent resistance is

40 10

40 + 10 ~

In Figure 3.6-5d the parallel combination of the 40-0 and 10-0 resistors has been replaced with the equivalent
8-0 resistor. Thus, the ohmmeter measures a resistance equal to 8 O.
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rrm

20Q
-O Ohmmeter®©

-AAA-—--F---0 O

*60Q < 30fi < 10n
@
<<=> -O Ohmmeter Q
'8Q
© (d)
FIGURE 3.6-5

Example 3.6-3 Circuit Analysis Using Equivalent Resistances

Determine the values of /3, v4, i5, and v6 in circuit shown in Figure 3.6-6.

Solution

The circuit shown in Figure 3.6-7 has been obtained from the circuit shown in Figure 3.6-6 by replacing series and
parallel combinations of resistances by equivalent resistances. We can use this equivalent circuit to solve this
problem in three steps:

1. Determine the values of the resistances R\, and R3in Figure 3.6-7 that make the circuit in Figure 3.6-7
equivalent to the circuit in Figure 3.6-6.

figure 3.6-6 The circuit considered in Example 3.6-3.
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+ M
gb
+ M-
—Wv—
12ft 12 ft
6ft 18ft 24 ft
ab—"VW  AAA/— AN at— Sb
- W H 8ft
_ . @ (b) ©
FIGURE 3.6-7 An equivalent circuit for the
FIGURE 3.6-8

circuit in Figure 3.3-6.

2. Determine the values of vu v2, and / in Figure 3.6-7.

3. Because the circuits are equivalent, the values of  v2 and zin Figure 3.6-6 are equal to the values of vj,
V2, and zin Figure 3.6-7. Use voltage and current division to determine the values of 23, v4, 5, and V6 in

Figure 3.6-6.

Step I: Figure 3.6-8a shows the three resistors at the top of the circuit in Figure 3.6-6. We see that the 6-O
resistor is connected in series with the 18-O resistor. In Figure 3.6-8b, these series resistors have been replaced by
the equivalent 24-0 resistor. Now the 24-0 resistor is connected in parallel with the 12-0 resistor. Replacing
series resistors by an equivalent resistance does not change the voltage or current in any other element of the
circuit. In particular, vI? the voltage across the 12-0 resistor, does not change when the series resistors are
replaced by the equivalent resistor. In contrast, v4 is not an element voltage of the circuit shown in Figure 3.6-8b.

In Figure 3.6-8c, the parallel resistors have been replaced by the equivalent 8-Oresistor. The voltage across
the equivalent resistor is equal to the voltage across each of the parallel resistors, vjin thiscase. In summary, the
resistance R\ in Figure 3.6-7 is given by

Ri = 12| (6+ 18) = 80
Similarly, the resistances R2 and R3 in Figure 3.6-7 are given by
R2= 12+ (20 | 5) = 160
*3=8] (2+6)=40
Step 2: Apply KVL to the circuit of Figure 3.6-7 to get

R\i+R2i+R$i+ & —18=0 = i= 18 18

= = =05 A
R\ +R2+/3+8 8+16 +4+ 38

Next, Ohm’s law gives
v, = R\i= 8(0.5) =4V and v2=R3i=4(05) =2V

Step 3: The values of vj, v2, and zin Figure 3.6-6 are equal to the values of vj, v2, andzin Figure 3.6-7.
Returning our attention to Figure 3.6-6, and paying attention to reference directions, we can determine thevalues
of i3, v4, 5, and v6 using voltage division, current division, and Ohm’s law:

*-rM fw 5 (05,=0'25A

T
v = - 6+18 VI = - 1 (4) = -3V
> 05) = -0.1 A
20454 Gy :

\6 (20 || 5)i = 4(0.5) = 2V J
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In general, we may find the equivalent resistance for a portion of a circuit consisting only of
resistors and then replace that portion of the circuit with the equivalent resistance. For example,
consider the circuit shown in Figure 3.6-9. The resistive circuit in (a) is equivalent to the single 56 i
resistor in (b). Let’s denote the equivalent resistance as Req. We say that Req is the equivalent
resistance seen looking into the circuit of Figure 3.6-9(a) from terminals a-b." Figure 3.6-9(c) shows a
notation used to indicate the equivalent resistance. Equivalent resistance is an important concept that
occurs in a variety of situations and has a variety of names. “ Input resistance,” “output resistance,
“Thevenin resistance,” and “ Norton resistance” are some names used for equivalent resistance.

a
0-

(a) (b) (c)
FIGURE 3.6-9 The resistive circuit in (a) is equivalent to the single resistor in (b). The notation used to indicate the

equivalent resistance is shown in (C).

EXERCISE 3.6-1 Determine the resistance measured by the ohmmeter in Figure E 3.6-1.

FIGURE E 3.6-1

(30 + 30) 30
Answer: + 30 =50a
(30 + 30) + 30

37 ANALYZING RESISTIVE CIRCUITS
USING MATLAB

We can analyze simple circuits by writing and solving a set of equations. We use Kirchhoffs law and
the element equations, for instance, Ohm’s law, to write these equations. As the following example
illustrates, MATLAB provides a convenient way to solve the equations describing an electric circuit.

Example 3.7-1 MATLAB for Simple Circuits

Determine the values of the resistor voltages and currents for the circuit shown in Figure 3.7-1.

40 n

12V 32 0

FIGURE 3.7-1 The circuit considered in Example 3.7-1.
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aon 2 48Q %
AT

12V i4>80 Q
FIGURE 3.7-2 The circuit from Figure 3.7-1 after labeling the resistor voltages and currents.

Solution
Let’s label the resistor voltages and currents. In anticipation of using Ohm’s law, we will label the voltage and

current of each resistor to adhere to the passive convention. (Pick one of the variables—the resistor current or the
resistor voltage—and label the reference direction however you like. Label the reference direction of the other
variable to adhere to the passive convention with the first variable.) Figure 3.7-2 shows the labeled circuit.

Next, we will use Kirchhoffs laws. First, apply KCL to the node at which the current source and the 40-11,
48-0, and 80-0 resistors are connected together to wTite

2+ 15=0.5 + ¥ (3.7-1)
Next, apply KCL to the node at which the 48-0 and 32-0 resistors are connected together to write
is =% (3.7-2)
Apply KVL to the loop consisting of the voltage source and the 40-0 and 80-0 resistors to write
2=+ v (3.7-3)
Apply KVL to the loop consisting of the 48-0, 32-0, and 80-0 resistors to write
v4 om\5 + V= 0 (3.7-4)
Apply Ohm’s law to the resistors.
V2 =402, v4 = 8014, v5 = 48 /5, v6 =3216 (3.7-5)

We can use the Ohm’s law equations to eliminate the variables representingresistor voltages. Doing so enables us
to rewrite Eq. 3.7-3 as:

12= 402+ 802 (3.7-6)

Similarly, we can rewrite Eq. 3.7-4 as
80i4+485+328=0 (3.7-7)
Next, use Eq. 3.7-2 to eliminate z from Eq. 3.7-6 as follows
80z4 +48z5+32z5=0 = 80/4 +80/5=0=> ZA= -25 (3.7-8)
Use Eqg. 3.7-8 to eliminate & from Eq. 3.7-1.
2-/4=05+74 = 2=05+2 2% (3.7-9)

Use Egq. 3. -9 to eliminate z from Eq. 3.7-6. Solve the resulting equation to determine the value of 2.

12=40)2+ 80(~ 2°5) = 80<~20 ~ '2= =04A (3.7-10)
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Now we are ready to calculate the values of the rest of the resistor voltages and currents as follows:

i2- 05 04- 0.
4o 27050 205:_0.05A’

2
i6=1is = —m= 0.05A,

v2 = 40/2= 40(0.4) = 16V,
v4 = 80/4 = 80(—0.05) = -4 V,
V5=48 5=48(0.05) = 2.4V,
and v6 = 32/6 = 32(0.05) = 1.6 V.

MA TLAB Solution 1
The preceding algebra shows that this circuit can be represented by these equations:

i2- 05
12=80i2- 20,4 = al -, 6= i5= - 14,v2 = 40/2, v4 = 80 4,

v5 = 48 5, and v6 = 32 is

These equations can be solved consecutively, using MATLAB as shown in Figure 3.7-3.

MVAILAB JAp 1 xj
MAILAB JDIxJ File Edit Debug Desktop Window Help
File Edit Debug Desktop Window Help
D s # * m - - & & f

p cg( % % m . c f:y
Shortcuts [S How to Add [£] What's New

Shortcuts (3 How to Add 1} What's New

jo» A=[ 1 -1 1 0 ; £l
j» 12= (12+20)/80 o o 11
12 = 40 80 0 0;
0.4000
_ : 0 80 48 32]
i »  i4= (i2-0.5}/2 A =
j14 =
0.0500 ! ! ! 0
. 0 0 1 -1
>> BT
40 80 0 0
» 16=15; o 80
» v2=40%*i2 48 32
v2 = » B=[0.5; 0; 12; 0]
B =
16
o> vA=80r b 0.5000
vd = o]
40000 12.0000
» V5=48*i5 0
v5 = » i=A\ B
2.4000 =
» Vv6=32%16 0.4000
V6 = -0.0500
1.6000 0.0500
» v 0.0500
. 1 » -
il J tor ’I_
_4_*rStarT|i J\] ...... J |T
i ¢+ Sat|

H(jLRE 3.7-3 Consecutive equations.
FIGURE 3.7-4 Simultaneous equations.
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MATLAB Solution 2
We can avoid some algebra if we are willing to solve simultaneous equations.

After applying Kirchhoffs laws and then using the Ohm’s law equations to eliminate the variables
representing resistor voltages, we have Egs 3.7-1, 2, 6, and 7:

i2-fj5ae 05+ #, 5= 2612 = 40 22+ 80 #,

80 24 -h48 %54-32 25—0
This set of four simultaneous equations in 2, 24, 3, and 25can be written as a single matrix equation.

1 -11 0 h 0.5
0 0 1-1 2 0 (3.7-11)
40 80 0 is 0 12
0 80 4832 0
We can write this equation as
Ai =B (3.7-12)
where
"1 -1 1 o' h ‘0.5
0o 0 1 -1 _ 4 0
= = andB =
A= 40 80 o o ! is 12
0 80 48 32 J6. 0

This matrix equation can be solved using MATLAB as shown in Figure 3.7-4. After entering matrices A and B,
the statement

i= A\B
tells MATLAB to calculate 2 by solving Eq 3.7-12.

A circuit consisting of n elements has n currents and n voltages. A set of equations representing that
circuit could have as many as 2n unknowns. We can reduce the number of unknowns by labeling the
currents and voltages carefully. For example, suppose two of the circuit elements are connected in series.
We can choose the reference directions for the currents in those elements so that they are equal and use
one variable to represent both currents. Table 3.7-1 presents some guidelines that will help us reduce the
number of unknowns in the set of equations describing a given circuit.

Guidelines for Labeling Circuit Variables

CIRCUIT FEATURE GUIDELINE

Resistors Label the voltage and current of each resistor to adhere to the passive convention. Use
Ohm’s law to eliminate either the current or voltage variable.

Series elements Label the reference directions for series elements so that their currents are equal. Use one

variable to represent the currents of series elements.

Parallel elements Label the reference directions for parallel elements so that their voltages are equal. Use one

variable to represent the voltages of parallel elements.

Ideal Voltmeter Replace each (ideal) voltmeter by an open circuit. Label the voltage across the open circuit

to be equal to the voltmeter voltage.

Ideal Ammeter Replace each (ideal) ammeter by a short circuit. Label the current in the short circuit to be

equal to the ammeter current.
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3.8 HOW CAN WE CHECK ...?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For
example, proposed solutions to design problems must be checked to confirm that all of the
specifications have been satisfied. In addition, computer output must be reviewed to guard against

data-entry errors, and claims made by vendors must be examined critically.
Engineering students are also asked to check the correctness of their work. For example,
occasionally just a little time remains at the end of an exam. It is useful to be able to quickly identify

those solutions that need more work.
The following example illustrates techniques useful for checking the solutions of the sort of

problem discussed in this chapter.

Example 3.8-1 How Can We Check Voltage and Current Values?

The circuit shown in Figure 3.8-la was analyzed by writing and solving a set of simultaneous equations:
12=v2+ 4/3)id=y 4-13,vs = 4/3, and — = 4+ 5/4

The computer Mathcad (Mathcad User's Guide, 1991) was used to solve the equations as shown in Figure 3.8-
1b. It was determined that

v2= -60V,i3= 18A,i4= 6A, andvs= 72 V.

How can we check that these currents and voltages are correct?

«6=5/4
v2 = 0 i3 =0 i4 =0 v5 =0
Given
12 * v2 + 4 «i3 Apply KVL to loop A.
c
+ UuS - i Ve
i4 =>— +1i3 Apply KCL at node b.
v5 4 i3 Apply KVL to loop B.
4q v5
bi—VA—id y ~ 14 +5-14 Apply KCL at node c.

FIGURE 3.8-1 (a) An example circuit and (b) computer analysis using Mathcad.
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Solution
The current i2 can be calculated from v2f i3, i4, and v5 in a couple of different ways. First, Ohm’s law gives

Next, applying KCL at node b gives
= 1-bhu= 18-hb6=24A

Clearly, i2 cannot be both -12 and 24 A, so the values calculated for v2, i3, i4, and v5 cannot be correct.
Checking the equations used to calculate v2, i3, i4, and v5 we find a sign error in the KCL equation

corresponding to node b. This equation should be

After making this correction, vz, 13, z4 and vs are calculated to be

V=75V, B=1125A, 4= 0375A.v5=45V

Now

and i2=23+1i4= 1125+ 0.375 = 15A

This checks as we expected.
As an additional check, consider v3. First, Ohm’s law gives

V3= M3 -4 (1125 = a5 v
Next, applying KVL to the loop consisting of the voltage source and the 4-fl and 5-fl resistors gives
v3=12-v2= 12-7.5 =45V
Finally, applying KVL to the loop consisting of the ..o and 4-H resistors gives
v3: v5- 45y
The results of these calculations agree with each other, indicating that
v2=75V, 3= 1125A i4=0375A, v5= 45V

are the correct values.
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j 3.9 DESIGN EXAMPLE [--eomeomeomeoeeme

ADJUSTABLE VOLTAGE SOURCE

A circuit is required to provide an adjustable voltage. The specifications for this circuit are
that:

1. It should be possible to adjust the voltage to any value between -5 V and +5 V. It should
not be possible accidentally to obtain a voltage outside this range.

2. The load current will be negligible.

3. The circuit should use as little power as possible.

The available components are:

1. Potentiometers: resistance values of 10 kfl, 20 kO, and 50 kfi are in stock

2. A large assortment of standard 2 percent resistors having values between 10 H and 1 MCl
(see Appendix D)

3. Two power supplies (voltage sources): one 12-V supply and one —12-V supply, both
rated at 100 mA (maximum)

Describe the Situation and the Assumptions

Figure 3.9-1 shows the situation. The voltage v is the adjustable voltage. The circuit that uses
the output of the circuit being designed is frequently called the load. In this case, the load
current is negligible, so i= 0.

Load current
i=0

FIGURE 3.9-1 The circuit being
designed provides an adjustable
voltage, v, to the load circuit.

State the Goal
A circuit providing the adjustable voltage

—5V < v< +5V

must be designed using the available components.

Generate a Plan
Make the following observations.
1. The adjustability of a potentiometer can be used to obtain an adjustable voltage v.

2. Both power supplies must be used so that the adjustable voltage can have both positive
and negative values.

3. The terminals of the potentiometer cannot be connected directly to the power supplies
because the voltage v is not allowed to be as large as 12 V or -12 V.
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These observations suggest the circuit shown in Figure 3.9-2a. The circuit in Figure 3.9-2b is
obtained by using the simplest model for each component in Figure 3.9-2a.

FIGURE 3.9-2 {a) A proposed circuit for producing the variable voltage, v, and (b) the equivalent circuit
after the potentiometer is modeled.

To complete the design, values need to be specified for Ru R2, and Rp. Then several
results need to be checked and adjustments made, if necessary.

1. Can the voltage v be adjusted to any value in the range —5 V to -1-:5v?

2. Are the voltage source currents less than 100 mA? This conditionmust be satisfied if the
power supplies are to be modeled as ideal voltage sources.

3. Is it possible to reduce the power absorbed by Ru R2, and Rp?
Act on the Plan

It seems likely that Rx and R2 will have the same value, so let R\ =R2=R. Then it is
convenient to redraw Figure 3.9-2b as shown in Figure 3.9-3.

FIGURE 3.9-3 The circuit after setting R]=R2=R.

Applying KVL to the outside loop yields
-12 + Ria+ aRpia+ (i - a)Rpi. + Ria-12 =0

t - 24
a 2R+Rp
Next, applying KVL to the left loop gives
v= 12 - (R + aRp)ia
Substituting for i, gives
24(R + aflp)
2S + «,,
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When a= 0, v must be 5V, so
24/?
2 -
27+ I7p
Solving for /? gives
R = OJRp
Suppose the potentiometer resistance is selected to be Rp= 20 kft, the middle of the three

available values.
Then,

R = 14 kO

Verify the Proposed Solution
As a check, notice that when a= 1,

/ M.QO00 + 20.000 \ 5
V28,000k + 20,000y
as required. The specification that
-5V<v<5V

has been satisfied. The power absorbed by the three resistances is

242

—i"{2R -bRp) —
P IZ{/ ) 2R + Rp
S0 p=12mwW

Notice that this power can be reduced by choosing Rp to be as large as possible, 50 kO in
this case. Changing Rpto 50 kCl requires a new value of R:

R=0J x Rp = 35kO

Because

-5Vv=12- {350 24 < v< 12— (- 35°00° 8242 5V
\ ~ = 00J

V70,000 + 50,
the specification that

-5V<<v<bV
has been satisfied. The power absorbed by the three resistances is now

242
- = 5mwW
H 50,000 + 70,000

Finally, the power supply current is
. _ 24
" ~ 50,000 + 70,000 “ °'2

which is well below the 100 mA that the voltage sources are able to supply. The design is
complete.



3100 SUMMARY

O Kirchhoffs current law (KCL) states that the algebraic sum
of the currents entering a node is zero. Kirchhoffs voltage
law (KVL) states that the algebraic sum of the voltages
around a closed path (loop) is zero.

O Simple electric circuits can be analyzed using only Kirchhoffs
laws and the constitutive equations of the circuit elements.

O Series resistors act like a “voltage divider,” and parallel
resistors act like a “current divider.” The first two rows of
Table 3.10-1 summarize the relevant equations.

O Series resistors are equivalent to a single “equivalent resis-
tor.” Similarly, parallel resistors are equivalent to a single

o

Summary

“equivalent resistor.” The first two rows of Table 3.10-1
summarize the relevant equations.

Series voltage sources are equivalent to a single
“equivalent voltage source.” Similarly, parallel current
sources are equivalent to a single “equivalent current.”
The last two rows of Table 3.10-1 summarize the rele-
vant equations.

Often circuits consisting entirely of resistors can be
reduced to a single equivalent resistor by repeatedly
replacing series and/or parallel resistors by equivalent
resistors.

Table 3 10 1 Equivalent Circuits for Series and Parallel Elements

| RI 1
+ \%i +1
Series resistors Circuit WV>R2 Circut v g
J2 -
L _ _R1 o m .
I=1=i2vx= Bj+BZV' and v2—--—-;-/?—2V Rs=RI +R2 and v=Rsi
Parallel resistors
Series voltage Circuit
sources
Parallel current Circuit V eifhi! Circuit
sources 0:

v=iljsv2 and i=ij +i2

D=1+
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PROBLEMS

Section 3.2 Kirchhoff s Laws

P 3.2-1 Consider the circuit shown in Figure P 3.2-1 Deter-
mine the values of the power supplied by branch B and the
power supplied by branch F.

+4V-

-1 A
Figure P 3.2-1

P 3.2-2 Determine the values of 2, %, v2, v3, and v6 in Figure
P 3.2-2.

v3 4v-

Figure P 3.2-2

P 3.2-3 Consider the circuit shown in Figure P 3.2-3.

(a) Suppose that/?! =80 and R2=4 O. Find the current i and
the voltage v.

(b) Suppose, instead, that i =2.25 A and v= 42 V. Determine
the resistances R\ and R2.

(c) Suppose, instead, that the voltage source supplies 24 W of
power and that the current source supplies 9 W of power.
Determine the current i, the voltage v, and the resistances
R\ and R2.

P 3.2-4 Determine the power absorbed by each of the resis-
tors in the circuit shown in Figure P 3.2-4.

Answer: The 4-0 resistor absorbs 100 W, the 6-0 resistor
absorbs 24 W, and the 8-0 resistor absorbs 72 W.

3A

20V

Figure P 3.2-4
P 3.2-5 Determine the power absorbed by each of the resis-
tors in the circuit shown in Figure P 3.2-5.

Answer: The 4-0 resistor absorbs 16 W, the 6-11 resistor
absorbs 24 W, and the 8-0 resistor absorbs 8 W.

8V

Figure P 3.2-5

P 3.2-6 Determine the power supplied by each current source
in the circuit of Figure P 3.2-6.

Answer: The 2-mA current source supplies 6 mW, and the
1-mA current source supplies — mW.

5V 2 mA

P 3.2-7 Determine the power supplied by each voltage source
in the circuit of Figure P 3.2-7.

Answer: The 2-V voltage source supplies 2 mW and the 3-V
voltage source supplies —6 mW.

3V 2V



P 3.2-8 What is the value of the resistance R in Figure
P 3.2-8.

Hint: Assume an ideal ammeter. An
equivalent to a short circuit.

Answer: R—4 0

ideal ammeter is

P 3.2-9 The voltmeter in Figure P 3.2-9 measures the value of
the voltage across the current source to be 56 V. What is the
value of the resistance R?

Hint: Assume an ideal voltmeter. An ideal voltmeter is
equivalent to an open circuit.

Answer: R= 10 H

Figure P 3.2-9

P 3.2-10 Determine the values of the resistances R\ and R2in
Figure P 3.2-10.

P3.2-11 The circuit shown in Figure P 3.2-11 consists of five
voltage sources and four current sources. Express the power
supplied by each source in terms of the voltage source voltages
and the current source currents.

Problems-—-- ( 8

1v7

Figure P 3.2-11

P 3.2-12 Determine the power received by each of the
resistors in the circuit shown in Figure P 3.2-12.
+ -

P 3.2-13 Determine the voltage and current of each of the
circuit elements in the circuit shown in Figure P 3.2-13.

Hint: You’ll need to specify reference directions for the
element voltages and currents. There is more than one way
to do that, and your answers will depend on the reference
directions that you choose.

15V 0.25 A

10 ft
Figure P 3.2-13

P 3.2-14 Determine the voltage and current of each of the
circuit elements in the circuit shown in Figure P 3.2-14.

Hint: You'll need to specify reference directions for the
element voltages and currents. There is more than one way
to do that, and your answers will depend on the reference
directions that you choose.
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Figure P 3.2-14

P 3.2-15 Determine the value of the current that is measured
by the meter in Figure P 3.2-15.

Figure P 3.2-15

P 3.2-16 Determine the value of the current that is measured
by the meter in Figure P 3.2-16.

KzZu—o Ammeter Q

Figure P 3.2-16

P 3.2-17 Determine the value of the voltage that is measured
by the meter in Figure P 3.2-17.

P 3.2-18 Determine the value of the voltage that is measured
by the meter in Figure P 3.2-18.

1 60 ft

P 3.2-19 The voltage source in Figure P 3.2-19 supplies

3.6 W ofpower. The current source supplies 4.8 W. Determine
the values of the resistances, R\ and R2-

P 3.2-20 Determine the current / in Figure P 3.2-20.

Answer:i=4 A

4a

vV (T)2A

Figure P 3.2-20

P 3.2-21 Determine the value of the current im in Figure
P 3.2-21ar.

6Q

va(T) 3A \ i/ 25v,

(a)

1

Figure P 3.2-21 (a) A circuit containing a VCCS. (b) The circuit
after labeling the nodes and some element currents and voltages.

Hint: Apply KVL to the closed path a-b-d-c-a in Figure
P 3.2-21/? to determine va. Then apply KCL at node b to find im.

Answer: im=9 A

P 3.2-22 Determine the value of the voltage vm in Figure
P 3.2-22a.

Hint: Apply KVL to the closed path a-b-d-c-a in Figure
P 3.2-22b to determine va.

Answer: vm= 24 V
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P 3.2-26 Determine the value of the voltage v5for the circuit

50
shown in Figure P 3.2-26.

40

@

Figure P 3.2-26

P 3.2-27 Determine the value of the voltage v6 for the circuit
shown in Figure P 3.2-27.

Figure P 3.2-22 (@) A circuit containing a VCVS. (b) The circuit

after labeling the nodes and some element currents and voltages. v6

P 3.2-23 Determine the value of the voltage v6 for the circuit
shown in Figure P 3.2-23.

i=10i2 . o
P 3.2-28 Determine the value of the voltage v5 for the circuit

shown in Figure P 3.2-28.

250 mA
220 mA
Figure P 3.2-23
P 3.2-24 Determine the value of the voltage v6 for the circuit 25 mA 0.5u2
shown in Figure P 3.2-24. .
Figure P 3.2-28
15 mA v5»l0u2

P 3.2-29 The voltage source in the circuit shown in Figure

r— -/
- 2K5‘]n “““ ) P 3.2-29 supplies 2 W of power. The value of the voltage
across the 25-0 resistor is v2= 4 V. Determine the values of
.V - 12vo S0as the resistance R\ and of the gain, G, of the VCCS.
_____ o
25 mA

Figure P 3.2-24
P 3.2-25 Determine the value of the voltage v5 for the circuit
shown in Figure P 3.2-25.

45Q 250 mA

Figure P 3.2-29

P 3.2-30 Consider the circuit shown in Figure P 3.2-30.
Determine the values of
(a) The current iain the 20-11 resistor.

Fioure P 3.2.5 (b) The voltage vb across the 10-0 resistor.
lgure  3.2- (c) The current ic in the independent voltage source.
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L-VW
20 ft  ia

Figure P 3.2-30

Section 3.3 Series Resistors and Voltage Division

P 3.3-1 Use voltage division to determine the voltages vb v2,
V3, and V4 in the circuit shown in Figure P 3.3-1.

P 3.3-2 Consider the circuits shown in Figure P 3.3-2.

(a) Determine the value of the resistance R in Figure P 3.3-2b
that makes the circuit in Figure P 3.3-2b equivalent to the
circuit in Figure P 3.3-2a.

(b) Determine the current / in Figure P 3.3-26. Because the
circuits are equivalent, the current i in Figure P 3.3-2a is
equal to the current i in Figure P 3.3-2b.

(c) Determine the power supplied by the voltage source.

6 3ft 2ft
aaar- NMNW - -vw -
41t
(a)

Figure P 3.3-2

P 3.3-3 The ideal voltmeter in the circuit shown in Figure
P 3.3-3 measures the voltage v.

(a) Suppose R2=50 fl. Determine the value of R\.

(b) Suppose, instead, 72=50 d. Determine the value of
Ri.

(c) Suppose, instead, that the voltage source supplies 1.2 W of
power. Determine the values of both R{and R2.

P 3.3-4 Determine the voltage v in the circuit shown in
Figure P 3.3-4.

P 3.3-5 The model of a cable and load resistor connected to a
source is shown in Figure P 3.3-5. Determine the appropriate
cable resistance, R, so that the output voltage, vG remains
between 9 V and 13 V when the source voltage, vs, varies
between 20 V and 28 V. The cable resistance can assume
integer values only in the range 20 < R < 100 H.

-0-—VA—°-
Cable yo>100ft
-0--——--V v\—
R

Figure P 3.3-5 Circuit with a cable.

P 3.3-6 The input to the circuit shown in Figure P 3.3-6 is
the voltage ofthe voltage source, va. The output of this circuit is
the voltage measured by the voltmeter, vb. This circuit produces
an output that is proportional to the input, that is,

\b= kva
where k is the constant of proportionality.

(a) Determine the value of the output, vb, when R = 180 Cl and
va= 18 V.

(b) Determine the value of the power supplied by the voltage
source when R= 180 O and va= 18 V.

(c) Determine the value of the resistance, R, required to cause
the output to be vb= 2 V when the input is va= 18 V.

(d) Determine the value of the resistance, R, required to cause
vb= 0.2va (that is, the value of the constant of proportion-
ality is k = +).



P 3.3-7 Determine the value of voltage v in the circuit shown
in Figure P 3.3-7.

15 ft 18V

Figure P 3.3-7

P 3.3-8 Determine the power supplied by the dependent
source in the circuit shown in Figure P 3.3-8.

Figure P 3.3-8

P 3.3-9 A potentiometer can be used as a transducer to
convert the rotational position of a dial to an electrical
quantity. Figure P 3.3-9 illustrates this situation. Figure
P 3.3-9a shows a potentiometer having resistance Rp con-
nected to a voltage source. The potentiometer has three
terminals, one at each end and one connected to a sliding
contact called a wiper. A voltmeter measures the voltage
between the wiper and one end of the potentiometer.

Figure P 3.3-9b shows the circuit after the potentiome-
ter is replaced by a model of the potentiometer that consists of
two resistors. The parameter a depends on the angle, #, of the
dial. Herea = and o is given in degrees. Also, in Figure P
3.3-96, the voltmeter has been replaced by an open circuit, and
the voltage measured by the voltmeter, vm has been labeled.
The input to the circuit is the angle o, and the output is the
voltage measured by the meter, vm

(a) Show that the output is proportional to the input.

(b) Let Rp= 1 kfl and v9—24 V. Express the output as a
function of the input. What is the value of the output when
0= 45°? What is the angle when vm= 10 V?

Problems------- 1 93

@
t (I-a)tfp
(o VYV $
»s(p aRP< un
(b)

Figure P 3.3-9

P 3.3-10 Determine the value of the voltage measured by the
meter in Figure P 3.3-10.

Figure P 3.3-10

P 3.3-11 For the circuit of Figure P 3.3-11, find the voltage v3
and the current i and show that the power delivered to the three
resistors is equal to that supplied by the source.

Answer:v3=3V,I= 1A

Figure P 3.3-11

P 3.3-12 Consider the voltage divider shown in Figure
P 3.3-12 when Rx= 8 ft. It is desired that the output power
absorbed by R\ be 45 W. Find the voltage vD and the
required source vs.

2 ft 4 ft

Figure P 3.3-12
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P 3.3-13 Consider the voltage divider circuit shown in Figure
P 3.3-13. The resistor R represents a temperature sensor. The
resistance R. in fi, is related to the temperature T, in °C, by the

equation

R=50+ —T

(a) Determine the meter voltage, vm, corresponding to tem-
peratures 0°C, 75°C and 100°C.

(b) Determine the temperature. T, corresponding to the meter
voltages 8V, 10V, and 15 V.

P 3.3-14 Consider the circuit shown in Figure P 3.3-14.

(a) Determine the value of the resistance R required to cause
v0= 17.07 V.

(b) Determine the value of the voltage vDwhen R = 14 ft.

(c) Determine the power supplied by the voltage source when
V0= 1422 V.

Figure P 3.3-14

Section 3.4 Parallel Resistors and Current Division

P 3.4-1 Use current division to determine the currents iu i2,
/3, and t4 in the circuit shown in Figure P 3.4-1.

Figure P 3.4-1

P 3.4-2 Consider the circuits shown in Figure P 3.4-2.

(a) Determine the value of the resistance R in Figure P 3.4-2/?
that makes the circuit in Figure P 3.4-2/? equivalent to the
circuit in Figure P 3.4-2a.

(b) Determine the voltage v in Figure P 3.4-2/?. Because the
circuits are equivalent, the voltage v in Figure P 3.4-2a is
equal to the voltage v in Figure P 3.4-2/2.

(c) Determine the power supplied by the current source.

4 £ 6A(f

(a) (b)
Figure P 3.4-2

P 3.4-3 The ideal voltmeter in the circuit shown in Figure
P 3.4-3 measures the voltage v.

(a) Suppose R2= 6 ft. Determine the value of Rj and of the
current i.

(b) Suppose, instead, R\ =6 ft. Determine the value ofR2and
of the current /.

(c) Instead, choose R\ and R2to minimize the power absorbed
by any one resistor.

P 3.4-4 Determine the current / in the circuit shown in Figure
P 3.4-4.

Figure P 3.4-4

P 3.4-5 Consider the circuit shown in Figure P 3.4-5 when
4 ft < /?, < 6 ft and R2= 10 ft. Select the source is so that
v0 remains between 9 V and 13 V.

Figure P 3.4-5

P 3.4-6 The input to the circuit shown in Figure P 3.4-6 is the
current of the current source, A. The output of this circuit is the
current measured by the ammeter, ij,. This circuit produces an
output that is proportional to the input, that is,

ib=k ia
where k is the constant of proportionality.

(a) Determine the value of the output, *, when R = 24 ft and
fa= 21 A



(b) Determine the value of the resistance, R, required to cause
the output to be ib= 15 A when the input is 2= 2 A

(c) Determine the value of the resistance, R, required to cause
ib= 0.4 ia (that is, the value of the constant of proportion-

ality is k —§9.

2Q A-
BAAA/— °< H

Figure P 3.4-6

P 3.4-7 Figure P 3.4-7 shows a transistor amplifier. The values
ofRiand R2are to be selected. Resistances Riand R2are used to
bias the transistor, that is, to create useful operating conditions.
Inthis problem, we want to select Ri and R2so that vb= 5 V. We
expect the value of b to be approximately 10 NjIA Wilien /j <
10zh, it is customary to treat /bas negligible, that is, to assume
D= 0. In that case, R\ and R2 comprise a voltage divider.

(@) Select values for Rl and R2 so that vb=5 V, and the
total power absorbed by Rxand R2 is no more than 5 mWw.
(b) An inferior transistor could cause /b to be larger than
expected. Using the values of Rx and R2 from part (a),
determine the value of vbthat would result from ib= 15 jiA.

Figure P 3.4-7

P 3.4-8 Determine the value of the current i in the circuit

shown in Figure P 3.4-8.
2A

Figure P 3.4-8
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P 3.4-9 Determine the value of the voltage v in Figure P 3.4-9.

40 ft 20 ft b
—O——W \r -AAAr-  -AAAr-  -O—
40 ft
- e -
3 mA

Figure P 3.4-9

P 3.4-10 A solar photovoltaic panel may be represented by the
circuit model shown in Figure P 3.4-10, where RL is the load
resistor. Determinethe values ofthe resistances R\ and RL.

12 ft a
| F-V A 9

(t) 30 mA Ri> * 5mA RI> 2V

Figure P 3.4-10

P 3.4-11 Determine the power supplied by the dependent
source in Figure P 3.4-11

Figure P 3.4-11

P 3.4-12 The voltmeter in Figure P 3.4-12 measures the value
of the voltage vm

(a) Determine the value of the resistance R.
(b) Determine the value of the power supplied by the current

Figure P 3.4-12

P 3.4-13 Determine the values of the resistances R* and R2
for the circuit shown in Figure P 3.4-13.
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*1

16 A

P 3.4-14 Determine the values of the resistances Ri and R2
for the circuit shown in Figure P 3.4-14.

+ 0.384V -

P 3.4-15 Determine the value of the current measured by the
meter in Figure P 3.4-15.

P 3.4-16 Consider the combination of resistors shown in
Figure P 3.4-16. Let Rp denote the equivalent resistance.

(@) Suppose 20 fl < R < 32011. Determine the correspond-
ing range of values of Rp.

(b) Suppose, instead, R = 0 (a short circuit). Determine the
value of Rp.

(c) Suppose, instead, R = 00 (an open circuit). Determine the
value of Rp.

(d) Suppose, instead, the equivalent resistance is Rp = 4011.
Determine the value of R.

Figure P 3.4-16

P 3.4-17 Consider the combination of resistors shown in
Figure P 3.4-17. Let Rp denote the equivalent resistance

(a) Suppose 40(1 <R < 40011. Determine the correspond-
ing range of values of Rp.

(b) Suppose, instead, /2= 0 (a short circuit). Determine the
value of Rp.

(c) Suppose, instead, R = oc (an open circuit). Determine the
value of Rp.

(d) Suppose, instead, the equivalent resistance is Rp = 80 fl.
Determine the value of R.

Figure P 3.4-17

P 3.4-18 Consider the combination of resistors shown in
Figure P 3.4-18. Let Rp denote the equivalent resistance.

(a) Suppose 5011 < R < 80011. Determine the correspond-
ing range of values of Rp.

(b) Suppose, instead, R = 0 (a short circuit). Determine the
value of Rp.

(c) Suppose, instead, R = oc (an open circuit). Determine the
value of Rp.

(d) Suppose, instead, the equivalent resistance is Rp — 150 0.
Determine the value of R.

Figure P 3.4-18

P 3.4-19 The input to the circuit shown in Figure P 3.4-19 is
the source current, /s. The output is the current measured by
the meter, iQ A current divider connects the source to the
meter. Given the following observations:

(@) The input /, = 5 A causes the output to be iQ= 2 A
(b) When i%= 2 A, the source supplies 48 W.

Determine the values of the resistances Rxand R2.



@

(b)

Figure P 3.4-19 (c)

Section 3.5 Series Voltage Sources and Parallel
Current Sources

P 3.5-1 Determine the power supplied by each source in
the circuit shown in Figure P 3.5-1.

8V
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Determine the value of the resistance R in Figure P 3.6-1b
that makes the circuit in Figure P 3.6-1b equivalent to the
circuit in Figure P 3.6-la.

Find the current i and the voltage v shown in Figure P 3.6-
1. Because of the equivalence, the current i and the
voltage v shown in Figure P 3.6-la are equal to the current
i and the voltage v shown in Figure P 3.6-1b.
Find the current 2, shown in Figure P 3.6-1a, using current
division.

)1.25 A
80
Figure P 3.5-1
P 3.5-2 Determine the power supplied by each source in the
circuit shown in Figure P 3.5-2. Figure P 3.6-1
2V 05 A
O O P 3.6-2 The circuit shown in Figure P 3.6-2a has been

divided into three parts. In Figure P 3.6-2b, the rightmost
part has been replaced with an equivalent circuit. The rest of

(p the circuit has not been changed. The circuit is simplified
further in Figure 3.6-2c. Now the middle and rightmost parts
have been replaced by a single equivalent resistance. The
leftmost part of the circuit is still unchanged.

Figure P 3.5-2 (@)
P 3.5-3 Determine the power received by each resistor in the

circuit shown in Figure P 3.5-3. (b)
3V

©
0.25A (" 2a0 7n> 0 125A

8V
Figure P 3.5-3 O

Section 3.6 Circuit Analysis

P 36-1 The circuit shown in Figure P 3.6-la has been
divided into two parts. In Figure P 3.6-1b, the right-hand
part has been replaced with an equivalent circuit. The left- ()
hand part of the circuit has not been changed.

Determine the value of the resistance R{in Figure P 3.6-2b
that makes the circuit in Figure P 3.6-2b equivalent to the
circuit in Figure P 3.6-2a.

Determine the value of the resistance R2 in Figure P 3.6-2C
that makes the circuit in Figure P 3.6-2c equivalent to the
circuit in Figure P 3.6-2b.

Find the current ixand the voltage \j shown in Figure P
3.6-2c. Because of the equivalence, the current ij and the
voltage vj shown in Figure P 3.6-2b are equal to the
current /i and the voltage M shown in Figure P 3.6-2c.

Hint: 24 = 6(/,-2) + /,rt2

Find the current i2 and the voltage v2 shown in Figure
P 3.6-2b. Because of the equivalence, the current i2
and the voltage v2 shown in Figure P 3.6-2a are equal
to the current i2 and the voltage v2 shown in Figure
P 3.6-2h.

Hint: Use current division to calculate i2 from i\.
Determine the power absorbed by the 3-1) resistance
shown at the right of Figure P 3.6-2a.
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Figure P 3.6-2

P 3.6-3 Find i, using appropriate circuit reductions and the
current divider principle for the circuit of Figure P 3.6-3.

1ft 1ft 1ft 1ft

P 3.6-4

(a) Determine values of  and R2 in Figure P 3.6-46 that
make the circuit in Figure P 3.6-46 equivalent to the
circuit in Figure P 3.6-4a.

(b) Analyze the circuit in Figure P 3.6-46 to determine the
values of the currents @ and ib.

(c) Because the circuits are equivalent, the currents z
and ib shown in Figure P 3.6-46 are equal to the currents
ia and ib shown in Figure P 3.6-4a. Use this fact to
determine values of the voltage vj and current i2 shown
in Figure P 3.6-4a.

_u+

Figure P 3.6-4

P 3.6-5 The voltmeter in the circuit shown in Figure P 3.6-5
shows that the voltage across the 30-0 resistor is 6 volts.
Determine the value of the resistance R\.

Hint: Use the voltage division twice.

Answer: R\ = 40 H

P 3.6-6 Determine the voltages va and vc and the currents ib
and id for the circuit shown in Figure P 3.6-6.

Answer: va= -2 V,vc=6V,ib=-16 mA, and id= 2 mA

P 3.6-7 Determine the value of the resistance R in Figure
P 3.6-7.

Answer: R = 2SkCl

12 kit

Figure P 3.6-7

P 3.6-8 Most of us are familiar with the effects of a mild
electric shock. The effects ofa severe shock can be devastating
and often fatal. Shock results when current is passed through
the body. A person can be modeled as a network of resistances.
Consider the model circuit shown in Figure P 3.6-8. Determine



the voltage developed across the heart and the current flowing
through the heart of the person when he or she firmly grasps
one end of a voltage source whose other end is connected to the
floor. The heart is represented by Rh. The floor has resistance to
current flow equal to Rt, and the person is standing barefoot on
the floor. This type of accident might occur at a swimming pool
or boat dock. The upper-body resistance Ru and lower-body
resistance RL vary from person to person.

Ru=20 ft
Rh=100 ft

R<= 200 ft R1=30 ft

Figure P 3.6-8
P 3.6-9 Determine the value of the current i in Figure 3.6-9.

Answer: i= 0.5 mA

3 kit 3 kit

P 3.6-10 Determine the values of ja, ib and vc in Figure
P 3.6-10.

10 ft

Figure P 3.6-10

P 3.6-11 Find i and Regabif vab= 40 V in the circuit of
Figure P 3.6-11.
Answer: Rega b=8H,/=5/6 A

6 ft

Figure P 3.6-11
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P 3.6-12 The ohmmeter in Figure P 3.6-12 measures the
equivalent resistance, Req, of the resistor circuit. The value of
the equivalent resistance, Reg, depends on the value of the
resistance R.

(a) Determine the value of the equivalent resistance, Rcg,

when R=9 H.
(b) Determine the value of the resistance R required to cause

the equivalent resistance to be Req= 12 fl.

P 3.6-13 Find the Reg at terminals a-b in Figure P 3.6-13.
Also determine /, iu and 2.

Answer: Req= 8 H,i=5A, \=5/3 A, i2=5/2 A

i 12 ft

P 3.6-14 All of the resistances in the circuit shown in Figure
P 3.6-14 are multiples of R. Determine the value of R.

Figure P 3.6-14

P 3.6-15 The circuit shown in Figure P 3.6-15 contains seven
resistors, each having resistance R. The input to this circuit is the
voltage source voltage, vs. The circuit has two outputs, vaand
Express each output as a function of the input.
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R R /\
+ ]
va<>R R<
1/ R 1
R~ s R

Figure P 3.6-15

P 3.6-16 The circuit shown in Figure P 3.6-16 contains three
10-11, 1/4-W resistors. (Quarter-watt resistors can dissipate
1/4 W safely.) Determine the range of voltage source volt-
ages, Vs, such that none of the resistors absorbs more than /4
W of power.

10Q

Figure P 3.6-16

P 3.6-17 The four resistors shown in Figure P 3.6-17 represent
strain gauges. Strain gauges are transducers that measure the
strain that results when a resistor is stretched or compressed.
Strain gauges are used to measure force, displacement, or pres-
sure. The four strain gauges in Figure P 3.6-17 each have a
nominal (unstrained) resistance 0f200 O and can each absorb 0.5
mW safely. Determine the range of voltage source voltages, vs,
such that no strain gauge absorbs more than 0.5 mW of power.

Figure P 3.6-17

P 3.6-18 The circuit shown in Figure P 3.6-18b has been
obtained from the circuit shown in Figure P 3.6-18a by
replacing series and parallel combinations of resistances by
equivalent resistances.

(a) Determine the values of the resistances R\, R2, and /?3in
Figure P 3.6-18b so that the circuit shown in Figure
P 3.6-18/) is equivalent to the circuit shown in Figure
P 3.6-18a.

(b) Determine the values of vj, vz, and / in Figure
P 3.6-18/?.

(c) Because the circuits are equivalent, the values of vif v2,
and i in Figure P 3.6-18a are equal to the values of V2,
and / inFigure P 3.6-1 Sh. Determine the values of v4, 5,
and v7 in Figure P 3.6-18a.

(b)

Figure P 3.6-18

P 3.6-19 Determine the values of vj, v2, 23 v4, v5, and /6 in
Figure P 3.6-19.

Figure P 3.6-19

P 3.6-20 Determine the values of 1, v. and Raqg for the circuit
shown in Figure P 3.6-20, given that vah= 18 V.
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measured by the meter, vG Show that the output of this circuit
is proportional to the input. Determine the value of the
constant of proportionality.

Figure P 3.6-20

P 3.6-21 Determine the value of the resistance R in the circuit
shown in Figure P 3.6-21, given that Req=09 ft .

Answer: R = 15 ft

Figure P 3.6-24

P 3.6-25 The input to the circuit in Figure P 3.6-25 is the
voltage of the voltage source, vs. The output is the current
measured by the meter, j0. Show that the output of this circuit
is proportional to the input. Determine the value of the
constant of proportionality.

4 ft

Figure P 3.6-21

P 3.6-22 Determine the value of the resistance R in the circuit
shown in Figure P 3.6-22, given that /?eq= 40 0.

Figure P 3.6-25

P 3.6-26 Determine the voltage measured by the voltmeter in
the circuit shown in Figure P 3.6-26.
4 ft ‘a
P 3.6-23 Determine the values of r, the gain of the CCVS, and
g, the gain of the VCCS, for the circuit shown in Figure P 3.6-23.

P 3.6-24 The input to the circuit in Figure P 3.6-24 is the
voltage of the voltage source, vs. The output is the voltage  Figure P 3.6-26
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P 3.6-27 Determine the current measured by the ammeter in
the circuit shown in Figure P 3.6-27.

N R R *
P 3.6-28 Determine the value of the resistance R that causes
the voltage measured by the voltmeter in the circuit shown in
Figure P 3.6-28 to be 6 V.

3A

Figure P 3.6-28

P 3.6-29 The input to the circuit shown in Figure P 3.6-29 is

the voltage of the voltage source, vs. The output is the current
freasured By the feter, m

(@) Suppose vs= 15 V. Determine the value of the resistance
R that causes the value of the current measured by the
meter to be im = 12 A

(b) Suppose vs= 15V and /*= 80 H Determine the current
measured by the ammeter.

(c) Suppose R=24 11 Determine the value of the input
voltage, V5 that causes the value of the current measured
by the meter to be /m=3 A

5va

16fi 9 Ammeter q
"—WV—odU-iH1

— VNA/—

Figure P 3.6-29

P 3.6-30 The ohmmeter in Figure P 3.6-30 measures the
equivalent resistance of the resistor circuit connected to the
meter probes.

(a) Determine the value of the resistance R required to cause

the equivalent resistance to be Req= 12 H.
ib) Determine the value of the ewﬂivalent resistance when

P 3.6-31 The voltmeter in Figure P 3.6-31 measures the
voltage across the current source.

(a) Determine the value ofthe voltage measured by the meter.
(b) Determine the power supplied by each circuit element.

doc oo r\ + ) ,
P 3 6 32 Determine the resistance measured by the ohmme-
ter in Figure P 3.6-32.



P 3.6-33 Determine the resistance measured by the ohmme-
ter in Figure P 3.6-33.

P 3.6-34 Consider the circuit shown in Figure P 3.6-34.
Given the values of the following currents and voltages:

z, = 0625A, 2= -25V, j3= -1.25 A,
and M = —18.75V,

determine the values of R2 Ri, and R4.

VA

Figure P 3.6-34

P 3.6-35 Consider the circuits shown in Figure P 3.6-35. The
equivalent circuit is obtained from the original circuit by replac-
ing series and parallel combinations of resistors with equivalent
resistors. The value of the current in the equivalent circuit is 5 =
0.8 A. Determine the values of Rx R2, R5/v2, and i3.

40V
-G -
180 320. 320.
100
-AAA—V W
b m +¥h=0C
original circuit

Figure P 3.6-35
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P 3.6-36 Consider the circuit shown in Figure P 3.6-36.
Given

V2 = -sz, B= ’1*'1, and v4 = -3v2,
determine the values of R\, R2, and Ra4.

Hint: Interpret v2 = fvs, Z = \i\. and v = 8v2 as current
and voltage division.

v4

Figure P 3.6-36

P 3.6-37 Consider the circuit shown in Figure P 3.6-37. Given

2. 2 4
V3= -vi.andza = -/2,

=
determine the values of R\, R2, and R4.
Hint: Interpreti2 = |is, v3 = | v\, and* = |z2 as current and

voltage division.

Figure P 3.6-37

P 3.6-38 Consider the circuit shown in Figure P 3.6-38.

(a) Suppose B = |zj. What is the value of the resistance R?

(b) Suppose, instead, v2 = 4.8 V. What is the value of the
equivalent resistance of the parallel resistors?

(c) Suppose, instead, R = 20 fl. What is the value of the
current in the 40-0 resistor?

Hint: Interpret 8 =\i\ as current division.

Figure P 3.6-38

P 3.6-39 Consider the circuit shown in Figure P 3.6-39.

(a) Suppose v3 = Jvj. What is the value of the resistance R?

(b) Suppose 2 =s 1.2 A. What is the value of the resistance R?

(c) Suppose R = 70 0. What is the voltage across the
20-H resistor?
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(d) Suppose R = 3011 What is the value of the current in this
30-0 resistor?
Hint: Interpret v3 = as voltage division.

2 R

v3> ion

P 3.6-40 Consider the circuit shown in Figure P 3.6-40.
Given that the voltage of the dependent voltage source is
va = 8 V, determine the values of R\ and vQ
+ V0 -
8Q *

va= 20 zb

Figure P 3.6-40

P 3.6-41 Consider the circuit shown in Figure P 3.6-41.
Given that the current of the dependent current source is
@A = 2 A, determine the values of R\ and iQ

L = 0.2vr

Figure P 3.6-41

P 3.6-42 Determine the values of z, /b, 2, and v, in the circuit
shown in Figure P 3.6-42.

5Q
rAA/V-i gqQ 2Q

r B - <AW— e wv—i
K j i

20 a >12Q

f [ i

Figure P 3.6-42

< 24Q

Section 3.7 Analyzing Resistive Circuits Using
MATLAB

P 3.7-1 Determine the power supplied by each of the
sources, independent and dependent, in the circuit shown in
Figure P 3.7-1.

/11,,,. yse the guidelines given in Section 3.7 to label the
circuit diagram. Use MATLAB to solve the equations repre-
senting the circuit.

P 3.7-2 Determine the power supplied by each of the sources,
independent and dependent, in the circuit shown in Figure

P 3.7-2.

Hint: Use the guidelines given in Section 3.7 to label the
circuit diagram. Use MATLAB to solve the equations repre-
senting the circuit.

Section 3.8 How Can We Check ...?

P 3.8-1 A computer analysis program, used for the circuit of
Figure P 3.8-1, provides the following branch currents and
voltages: ix= -0.833 A, /2= -0.333 A, i3= -1.167 A, and
v= 2.0 V. Are these answers correct?

Hint: Verify that KCL is satisfied at the center node and
that KVL is satisfied around the outside loop consisting of
the two 6-0 resistors and the voltage source.

6Q

Figure P 3.8-1

P 3.8-2 The circuit of Figure P 3.8-2 was assigned as a
homework problem. The answer in the back of the textbook
says the current, /, is 1.25 A. Verify this answer, using current
division.



5ft

Figure P 3.8-2

P 3.8-3 The circuit of Figure P 3.8-3 was built in the lab,
and vQwas measured to be 6.25 V. Verify this measurement,
using the voltage divider principle.

650 ft
smAMT

24\ 320 ft!

-AAN
230 ft
Figure P 3.8-3

P 3.8-4 The circuit of Figure P 3.8-4 represents an auto’s
electrical system. A report states that H= 9 A, B= —9 A, and
TA= 19.1 A. Verify that this result is correct.

Hint: Verify that KCL is satisfied at each node and that KVL is
satisfied around each loop.

*H  Headlights
-JWW
1.2 ft
0.05 ft zv
-AAAr
Battery mEH
01 ft A 14V
—V\Ar
Alternator -e -1

Figure P 3.8-4 Electric circuit model of an automobile’s
electrical system.

P 3.8-5 Computer analysis of the circuit in Figure P 3.8-5
shows that 2=—0.5 mA, and ib= —2 mA. Was the computer
analysis done correctly?

Hint: Verify that the KVL equations for all three meshes are
satisfied when ia= -0.5 mA, and /b= -2 mA.

Figure P 3.8-5
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P 3.8-6 Computer analysis of the circuit in Figure P 3.8-6.
shows that /a= 0.5 mA and /b= 4.5 mA. Was the computer
analysis done correctly?

Hint: First, verify that the KCL equations for all five nodes
are satisfied when ia= 0.5 mA, and zb= 4.5 mA. Next, verify
that the KVL equation for the lower left mesh (a-e-d-a) is
satisfied. (The KVL equations for the other meshes aren’t
useful because each involves an unknown voltage.)

Figure P 3.8-6

P 3.8-7 Verify that the element currents and voltages shown
in Figure P 3.8-7 satisfy KirchhofiTs laws:

(a) Verify that the given currents satisfy the KCL equations
corresponding to nodes a, b, and c.

(b) Verify that the given voltages satisfy the KVL equations
corresponding to loops a-b-d-c-a and a-b-c-d-a.

- 3V

+

5V

Figure P 3.8-7

*P 3.8-8 Figure P 3.8-8 shows a circuit and some corre-
sponding data. The tabulated data provides values of the
current, /, and voltage, v, corresponding to several values of
the resistance R2

(@) Use the data in rows 1and 2 of the table to find the values
of vsand Rx

(b) Use the results of part (a) to verify that the tabulated data
are consistent.

(c) Fill in the missing entries in the table.
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(a)
rZm A >V
0 2.4 0
10 1.2 12
20 0.8 16
30 ? 18
40 0.48 7
(b)

Figure P 3.8-8

*P 3.8-9 Figure P 3.8-9 shows a circuit and some corre-
sponding data. The tabulated data provide values of the

Design Problems

DP 3-1 The circuit shown in Figure DP 3-1 uses a potentiom-
eter to produce a variable voltage. The voltage vm varies as a
knob connected to the wiper of the potentiometer is turned.
Specify the resistances R\ and R2 so that the following three
requirements are satisfied:

1. The voltage vmvaries from 8 V to 12 V as the wiper moves
from one end of the potentiometer to the other end of the
potentiometer.

2. The voltage source supplies less than 0.5 W of power.

3. Each of Ru R2 and RPdissipates less than 0.25 W.

DP 3-2 The resistance RL in Figure DP 3-2 is the equivalent
resistance of a pressure transducer. This resistance is specified

current, i, and voltage, v, corresponding to several values of
the resistance R2
(a) Use the data in rows 1and 2 of the table to find the values

of jsand R\.

(b) Use the results of part (a) to verify that the tabulated data
are consistent.

(c) Fill in the missing entries in the table.

r2.d UA uVv
10 4/3 40/3
20 6/7 120/7
40 1/2 20
80 ? ?
@ (b)
Figure P 3.8-9

to be 200 ft ==5 percent. That is, 190 ft < Rh < 210 ft. The
voltage source isa 12V = 1percent source capable of supplying
5 W. Design this circuit, using 5 percent, 1/ 8-watt resistors for
R, and R2i so that the voltage across RL is

v=4v+ 10%
(A 5 percent, 1/g-watt 100-ft resistor has a resistance between
95 and 105 ft and can safely dissipate 1/8-W continuously.)

R2

12V

Figure DP 3-2

DP 3-3 A phonograph pickup, stereo amplifier, and speaker are
shown in Figure DP 3-3a and redrawn as a circuit model as
shown in Figure DP 3-3b. Determine the resistance R so that the
voltage v across the speaker is 16 V. Determine the power
delivered to the speaker.

Phonograph Amplifier

Speaker

(a)



Figure DP 3-3 A phonograph stereo system.

DP 3-4 A Christmas tree light set is required that will operate
from a 6-V battery on a tree in a city park. The heavy-duty
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The output of the current divider is proportional to the input.
The constant of proportionality, g, is called the gain of the
current divider and is given by

*1
A R\ --Rj
The power supplied by the current source is
= vsis = 1 Tz,
p= *1 4 *2 * 4D
where
RtR2

*ir
x1 F o

battery can provide 9 A for the four-hour period of operation is called the input resistance of the current divider.
each night. Design a parallel set oflights (select the maximum

. . ) (a) Design a current divider to have a gain, g = 0.65.
number oflights) when the resistance of each bulb is 12 H.

(b) Design a current divider to have a gain, g = 0.65, and an
DP 3-5 The input to the circuit shown in Figure DP 3-5 is the input resistance, Rm= 10000 O.
voltage source voltage, vs. The output is the voltage vQ The

output is related to the input by

*2
. VS
Ri + Ri g +
) >Rl R2<
The output of the voltage divider is proportional to the input.
The constant of proportionality, g, is called the gain of the
voltage divider and is given by
*2

R\ Ri

The power supplied by the voltage source is

Figure DP 3-6

DP 3-7 Design the circuit shown in Figure DP 3-7 to have an
output vG= 8.5 V when the input is vs= 12 V. The circuit should
require no more than 1 mW from the voltage source.

M+ RI *r
where
*in = *i + Ri
is called the input resistance of the voltage divider.
(a) Design a voltage divider to have a gain, g = 0.65.

(b) Design a voltage divider to have a gain, g = 0.65, and an

input resistance, Rin= 2500 H. Figure DP 3-7

*1 DP 3-8 Design the circuit shown in Figure DP 3-8 to have an
output i0=1.8 mA when the input is is= 5 mA. The circuit should
require no more than 1 mwW from the current source.

Figure DP 3-5

DP 3-6 The input to the circuit shown in Figure DP 3-6 is the ) * JRx  R2<
current source current, is. The output is the current i0. The B
output is related to the input by

* | . Figure DP 3-8
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To analyze an electric circuit, we write and solve a set of equations. We apply Kirchhoffs current and
voltage laws to get some of the equations. Theconstitutiveequations of thecircuit elements, such as
Ohm’s law, provide the remainingequations. Theunknown variablesare elementcurrents and
voltages. Solving the equations provides the values of the element current and voltages.

This method works well for small circuits, but the set of equations can get quite large for even
moderate-sized circuits. A circuit with only 6 elements has 6 element currents and 6 element voltages.
We could have 12 equations in 12 unknowns. In this chapter, we consider two methods for writing a
smaller set of simultaneous equations:

» The node voltage method

¢ The mesh current method

The node voltage method uses a new' type of variable called the node voltage. The “ node voltage
equations or, more simply, the “node equations,” are a set of simultaneous equations that represent a
given electric circuit. The unknown variables of the node voltage equations are the node voltages.

After solving the node voltage equations, we determine the values ofthe element currents and voltages
from the values of the node voltages.



Node Voltage Analysis of Circuits with Current Sources

It’s easier to write node voltage equations for some types of circuit than for others. Starting with
the easiest case, we will learn how to write node voltage equations for circuits that consist of:

» Resistors and independent current sources
¢ Resistors and independent current and voltage sources

« Resistors and independent and dependent voltage and current sources

The mesh current method uses a new type of variable called the mesh current. The “mesh current
equations” or, more simply, the “mesh equations,” are a set of simultaneous equations that represent
a given electric circuit. The unknown variables of the mesh current equations are the mesh currents.
After solving the mesh current equations, we determine the values of the element currents and voltages

from the values of the mesh currents.
It’s easier to write mesh current equations for some types of circuit than for others. Starting with

the easiest case, we will learn how to write mesh current equations for circuits that consist of:
» Resistors and independent voltage sources
« Resistors and independent current and voltage sources

» Resistors and independent and dependent voltage and current sources

42 NODE VOLTAGE ANALYSIS OF CIRCUITS
WITH CURRENT SOURCES

Consider the circuit shown in Figure 4.2-1a. This circuit contains four elements: three resistors and a
current source. The nodes of a circuit are the places where the elements are connected together. The
circuit shown in Figure 4.2-1a has three nodes. It is customary to draw the elements horizontally or
vertically and to connect these elements by horizontal and vertical lines that represent wires. In other
words, nodes are drawn as points or are drawn using horizontal or vertical lines. Figure 4.2-1b shows
the same circuit, redrawn so that all three nodes are drawn as points rather than lines. In Figure 4.2-1b,
the nodes are labeled as node a, node b, and node c.

Analyzing a connected circuit containing n. nodes will require n - 1KCL equations. One way to
obtain these equations is to apply KCL at each node of the circuit except for one. The node at which

(@
(b)

FIGURE 42-1 (a) A circuit with
three nodes. (£ The circuit after the
nodes have been labeled and a
reference node has been selected and
marked, (c) Using voltmeters to

(c) measure the node voltages.
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KCL is not applied is called the reference node. Any node of the circuit can be selected to be the
reference node. We will often choose the node at the bottom of the circuit to be the reference node.
(When the circuit contains a grounded power supply, the ground node of the power supply is usually
selected as the reference node.) In Figure 4.2-1/?, node c is selected as the reference node and marked
with the symbol used to identify the reference node.

The voltage at any node of the circuit, relative to the reference node, is called a node voltage. In
Figure 4.2-16, there, are two node voltages: the voltage at node a with respect to the reference node,
node c, and the voltage at node b, again with respect to the reference node, node c. In Figure 4.2-Ic,
voltmeters are added to measure the node voltages. To measure node voltage at node a, connect the red
probe ofthe voltmeter at node a and connect the black probe at the reference node, node c. To measure
node voltage at node b, connect the red probe ofthe voltmeter at node b and connect the black probe at
the reference node, node c.

The node voltages in Figure 4.2-Ic can be represented as vac and but it is conventional to
drop the subscript ¢ and refer to these as vaand vh. Notice that the node voltage at the reference node is
vee = ve = 0V because a voltmeter measuring the node voltage at the reference node w'ould have both
probes connected to the same point.

One of the standard methods for analyzing an electric circuit is to write and solve a set of
simultaneous equations called the node equations. The unknown variables in the node equations are the
node voltages of the circuit. We determine the values of the node voltages by solving the node equations.

To write a set of node equations, we do two things:

1. Express element current as functions of the node voltages.

2. Apply Kirchhoffs current law (KCL) at each of the nodes of the circuit except for the
reference node.

Consider the problem of expressing element currents as functions of the node voltages. Although
our goal is to express element currents as functions of the node voltages, we begin by expressing element
voltages as functions of the node voltages. Figure 4.2-2 shows how this is done. The voltmeters in Figure
4.2-2 measure the node voltages, v\ and v2, at the nodes of the circuit element. The element voltage has
been labeled as va. Applying Kirchhoffs voltage law to the loop shown in Figure 4.2-2 gives

Va= M-\
This equation expresses the element voltage, va, as a function ofthe node voltages, and v2.(There
is an easy way to remember this equation. Notice the reference polarity of the element voltage, va.
The element voltage is equal to the node voltage at the node near the  of the reference polarity
minus the node voltage at the node near the —of the reference polarity.)

Now consider Figure 4.2-3. In Figure 4.2-3a, we use what we have learned to express the voltage
of a circuit element as a function of node voltages. The circuit element in Figure 4.2-3a could be

I IGURE 4.2-2 Node voltages, v, and v2, and element voltage, va, of a circuit element.
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v\i-v2
| &s ------ooe-
V2 Vi ~ v2 yl R V2
OWA-—-0
vVi-v2 - + Vi~v2 -+
and v2, and element voltage,
\f - V2, ofa(a) generic circuit
1 1 1 element, (b) voltage source, and
(a) (b) (c) (C) resistor.

anything: a resistor, a current source, a dependent voltage source, and so on. In Figures 4.2-36 and c,
we consider specific types of circuit element. In Figure 4.2-36, the circuit element is a voltage source.
The element voltage has been represented twice, once as the voltage source voltage, Vs, and once as a
function of the node voltages, W —V2. Noticing that the reference polarities for Vsand vi - v2 are the
same (both + on the left), we write
Vs = vi- w2

This is an important result. Whenever we have a voltage source connected between two nodes of a
circuit, we can express the voltage source voltage, V®as a function of the node voltages, vj and v2.

Frequently, we know the value of the voltage source voltage. For example, suppose that
Vs = 12V. Then

12= vi —Vv2
This equation relates the values of two of the node voltages.

Next, consider Figure 4.2-3c. In Figure 4.2-3c, the circuit element is a resistor. We will use
Ohm’s law to express the resistor current, i, as a function of the node voltages. First, we express the
resistor voltage as a function of the node voltages, vi —v2. Noticing that the resistor voltage, W\ —v2,
and the current, i, adhere to the passive convention, we use Ohm’s law to write

Vi - v2
1~ R
Frequently, we know the value of the resistance. For example, when R = SCI, this equation becomes
Vv, - w2
1 8

This equation expresses the resistor current, i, as a function of the node voltages, v{and v2.

Next, let’s write node equations to represent the circuit shown in Figure 4.2-4a. The input to this
circuit is the current source current, is. To write node equations, we will first express the resistor currents as
functions of the node voltages and then apply KirchhofFs current law at nodes a and b. The resistor voltages
are expressed as functions of the node voltages in Figure 4.2-46, and then the resistor currents are expressed
as functions of the node voltages in Figure 4.2-4c.

The node equations representing the circuit in Figure 4.2-4 are obtained by applying Kirchhoffs
current law at nodes a and b. Using KCL at node a gives

=N +N T (4'2-13
Similarly, the KCL equation at node b is
va- W= \b
*1
122=/23 = 05fl, and 3= 4 A and Egs. 4.2-1 and 4.2-2 may be rewritten as
va-v b va

(4.2-2)

IfRi = |

VX-V2

FIGURE 4.2-3 No
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FIGURE 4.2-4

{a) A circuit with three
resistors. (b) The
resistor voltages
expressed as functions
ofthe node voltages.

(c) The resistor currents
expressed as functions
(c) of the node voltages.

’b
S [1»3
moO "b<*3

Solving Eq. 4.2-4 for vb gives
(4.2-5)

Substituting Eq. 4.2-5 into Eq. 4.2-3 gives
4 = va- Ya+ 2va = E3va (4.2-6)

Solving Eq. 4.2-6 for va gives

Finally, Eq. 4.2-5 gives

Thus, the node voltages of this circuit are

Example 4.2-1 Node Equations

Determine the value of the resistance R in the circuit shown in Figure 4.2-5a.

Solution

Let va denote the node voltage at node a and vj, denote the node voltage at node b. The voltmeter in Figure 4.2-5
measures the value of the node voltage at node b, Wo. In Figure 4.2-5/7. the resistor currents are expressed as
functions of the node voltages. Apply K.CL at node a to obtain
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Example 4.2-2 Node Equations

Obtain the node equations for the circuit in Figure 4.2-6.

Solution

Let va denote the node voltage at node a, vb denote
the node voltage at node b, and vc denote the node
voltage at node c. Apply KCL at node a to obtain

0 “*
Separate the terms of this equation that involve va
from the terms that involve and the terms that
involve vc to obtain. FIGURE 4.2-6 The circuit for Example 4.2-2

li + ©
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There is a pattern in the node equations of circuits that contain only resistors and current sources. In the node
equation at node a, the coefficient of va is the sum of the reciprocals of the resistances of all resistors connected to
no(je a The coefficient of  is minus the sum of the reciprocals of the resistances of all resistors connected
between node b and node a. The coefficient vc is minus the sum of the reciprocals of the resistances ofall resistors
connected between node ¢ and node a. The right-hand side of this equation is the algebraic sum of current source
currents directed into node a.

Apply KCL at node b to obtain

Separate the terms of this equation that involve va from the terms that involve  and the terms that involve vcto obtain

-(i)v-+ (NM+s +s)vb- (i) Vv=ii-i:

As expected, this node equation adheres to the pattern for node equations of circuits that contain only resistors and
current sources. In the node equation at node b, the coefficient of vb is the sum ofthe reciprocals of the resistances
ofall resistors connected to node b. The coefficient of vais minus the sum ofthe reciprocals ofthe resistances ofall
resistors connected between node a and node b. The coefficient of vc is minus the sum of the reciprocals of the
resistances of all resistors connected between node ¢ and node b. The right-hand side of this equation is the
algebraic sum of current source currents directed into node b.

Finally, use the pattern for the node equations of circuits that contain only resistors and current sources to
obtain the node equation at node c:

" j Example 4.2-3 Node Equations

Determine the node voltages for the circuit in Figure 4.2-6 when i\ = 1A, i2=2A, i3=3A, R}=5 ft, R2=
2 ft, Ri = 10ft, R4 = 4 ft, /?5= 5ft, and Rb = 2 ft.

Solution
The node equations are

09va- 0.2vw- 0.7vc= 3
- 0.2va+ 0.55W- 01vc= 1
—0.7va—0.1\b+ 13vc= —1
The node equations can be written using matrices as
Av—b
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B MATLAB
where Fle Eft D Qekp Wrcbw Hip
09 -0.2 07 3" "y, DOr ** IB“'" ftCf0o t
A= -0.2 055 -0.1 ,b= 1 and, v=w Shortcuts 3 Howto Add ® What's New
-0.7 0.1 13 -1 V< s A[ 09 -02 -0.7:
-0.2 055 -0.1;
This matrix equation is solved using MATLAB in Figure 4.2-7. -0.7 -0.1 1.3];
» b-[3; 1 -1];
“va- -7.1579- » v=Ab
V= \p = 50526
Ne. .3-4737.
7.1579
Consequently, va= 7.1579 V, vb = 5.0526 V, and vc —3.4737 V 5.0526
3.4737
» |
Stan;

FIGURE 4.2-7 Using MATLAB to solve the
node equation in Example 4.2-3.

EXERCISE 4.2-1  Determine the node voltages, va and b, for the circuit of Figure E 4.2-1.
Answer: va= 3Vand \b= 11V

EXERCISE 4.2-2 Determine the node voltages, vaand vb, for the circuit of Figure E 4.2-2.
Answer: va= -4/3 Vand \h= 4V

FIGURE E 4.2-1 FIGURE E 4.2-2

43 NODE VOLTAGE ANALYSIS OF CIRCUITS
WITH CURRENT AND VOLTAGE SOURCES

In the preceding section, we determined the node voltages of circuits with independent current sources
only. In this section, we consider circuits with both independent current and voltage sources.

First we consider the circuit with a voltage source between ground and one of the other nodes.
Because we are free to select the reference node, this particular arrangement is easily achieved.
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Supernode
. R2

T T

FIGURE 4.3-1 Circuit with an independent FIGURE 4.3-2 Circuit with a supemode
voltage source and an independent current source. that incorporates vaand vb.

Such a circuit is shown in Figure 4.3-1. We immediately note that the source is connected between
terminal a and ground and, therefore,

Thus, va is known and only vb is unknown. We write the KCL equation at node b to obtain
Vb vb Va
'S~ *3 *2

However, va = vs. Therefore,

Then, solving for the unknown node voltage vb, we get
RzR3h +/?23Vs
V- Ri+R)
Next, let us consider the circuit of Figure 4.3-2, which includes a voltage source between two nodes.
Because the source voltage is known, use KVL to obtain

va- vb = vs
or va- vs= vb

To account for the fact that the source voltage is known, we consider both node a and node b as
part of one larger node represented by the shaded ellipse shown in Figure 4.3-2. We require a larger
node because va and vb are dependent. This larger node is often called a supernode or a generalized
node. KCL says that the algebraic sum of the currents entering a supemode is zero. That means that we
apply KCL to a supemode in the same way that we apply KCL to a node.

A supernode consists of two nodes connected by an independent or a dependent voltage source.

We then can write the KCL equation at the supemode as

However, because va = vs+ vb, we have

Then, solving for the unknown node voltage vbh, we get
RRiis ~ R\s
Vb~ *1+*2

We can now compile a summary of both methods of dealing with independent voltage sources in
a circuit we wish to solve by node voltage methods, as recorded in Table 4.3-1.
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Table 4 Node Voltage Analysis Method with a Voltage Source

CASE METHOD

1 The voltage source connects node g and Set vgequal to the source voltage accounting for the polarities and
the reference node (ground). proceed to write the KCL at the remaining nodes.

2. The voltage source lies between two Create a supemode that incorporates a and b and equate the sum of all the
nodes, a and b. currents into the supemode to zero.

Example 4.3-1 Node Equations for a Circuit Containing

l Voltage Sources

Determine the node voltages for the circuit shown in Figure 4.3-3.

Solution
The methods summarized inTable 4.3-lare exemplified in this (+)4v12Q N 12Q
solution.  The 4-Vvoltagesourceconnected  to node a exemplifies
method 1 The 8-V source between nodes b and c exemplifies method 2.
Using method 1 for the 4-V source, we note that

v ~__4\</ FIGURE 4.3-3 A circuit containing two voltage
Using method 2 for the 8-V source, we have a supemode atsources, only one of which is connected to the
nodes b and c. The node voltages at nodes b and c are related by reference node.
=wvc+ 8
Writing a KCL equation for the supenode, we have
b~V \b \EAN 2
6 12 12.

or 3Vb-ve= 24+ 2va

Using va= —4V and vh= vc + 8 to eliminate va and vb, we have
3(vc-f8) + vs= 24 + 2(—4)
Solving this equation for vc, we get
vw= -2V
Now we calculate vb to be
W=vwvc+ 8=-2 +8= 6V

Example 4.3-2 Supernodes j-

Determine the values of the node voltages, va and vb, for the v

circuit shown in Figure 4.3-4.

Solution
We can write the first node equation by considering the voltage
source. The voltage source voltage is related to the node voltages by

W-va= 12 = w=va+ 12 FIGURE 4.3-4 The circuit for Example 4.3-2.

(U
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FIGURE 4.3-5 Method | For Example 4.3-2. FIGURE 4.3-6 Method 2 for Example 4.3-2.

To write the second node equation, we must decide what to do about the voltage source current. (Notice that there
is no easy way to express the voltage source current in terms of the node voltages.) In this example, we illustrate

two methods of writing the second node equation.
Method 1: Assign a name to the voltage source current. Apply KCL at both of the voltage source nodes.

Eliminate the voltage source current from the KCL equations.
Figure 4.3-5 shows the circuit after labeling the voltage source current. The KCL equation at node a is

15+/="n

The KCL equation at node b is
i+35+——0

Combining these two equations gives

Vb

1.5- (35+j) =j =-2.0=" +

A
6

Method 2: Apply KCL to the supemode corresponding to the voltage source. Shown in Figure 4.3-6, this
supemode separates the voltage source and its nodes from the rest of the circuit. (In this small circuit, the rest of
the circuit is just the reference node.)

Apply KCL to the supemode to get

15="~+35+ - = 20="+A"
6 ¥ - 63

This is the same equation that was obtained using method 1. Applying KCL to the supemode is a shortcut for
doings three things:

1. Labeling the voltage source current as i
2. Applying KCL at both nodes of the voltage source

3. Eliminating i from the KCL equations

In summary, the node equations are

V- va= 12
and ¥% + '5 = ~2-0
Solving the node equations gives
va= -12 V, andvb = ov
(w e might be surprised that vbis 0 V, but it is easy to checkthatthese values are correct by substituting them

\ into the node equations.)



Node Voltage Analysis of Circuits with Current and Voltage Sources —

4.3-3

Example

©

Node Equations for a Circuit Containing

Voltage Sources

Determine the node voltages for the circuit shown in Figure 4.3-7.

Solution

We will calculate the node voltages of this circuit by writing a KCL
equation for the supemode corresponding to the 10-V voltage source.

First notice that

and that

vj, = —12V

va= ve+ 10

Writing a KCL equation for the supemode, we have

or

va-" +2+vL-v, =5
10 40
4va+vc—5 = 120

Using va= vc+ 10 and Wb = —I12 to eliminate va and vb, we have

Q)

oV
-0 -
ion b 40n
VW 9 WA %C
d)ZA

FIGURE 4.3-7 The circuit for Example 4.3-3.

4(ve+ 10) + ve-5(-12) = 120

Solving this equation for vc, we get

ve=4V

EXERCISE 4.3-1 Find the node voltages for the circuit of Figure E 4.3-1.

Hint: Write a KCL equation for the supemode corresponding to the 10-V voltage source.

N
Answer: 2 + EirQ10+ >\'b: 5 = V=30V and va= 40V

EXERCISE 4.3-2 Find the voltages va and vb for the circuit of Figure E 4.3-2.

Answer: fo + 8)~ (~12"+" =3

FIGURE E 4J-1

v, =8V and va=16V

FIGURE E 4.3-2
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44 NODE VOLTAGE ANALYSIS
WITH DEPENDENT SOURCES

When a circuit contains a dependent source the controlling current or voltage of that
dependent source must be expressed as a function of the node voltages.

Itis then a simple matter to express the controlled current or voltage as a function ofthe node voltages.
The node equations are then obtained using the techniques described in the previous two sections.

Example 4.4-1 NodeEquationsforaCircuit Containing
a Dependent Source

Determine the node voltages for the circuit shown in Figure 4.4-1. a_" 6fi b 30 c
-AAN------ 9-
Solution
The controlling current of the dependent source is ix. Our first task (T) 8V © 2A 3ix</
is to express this current as a function of the node voltages:
va- \b
IX = —— -

The value of the node voltage at node a is set by the s.v voltage F*GURE 4 ... » circuitwithaccyvs
source to be

va= 8V

So 8-

The node voltage at node c¢ is equal to the voltage of the dependent source, so

vc= 3/x= 3 (4.4-1)

N

Next, apply KCL at node b to get

s t2° . (4.4-2)

Using Eq. 4.4-1 to eliminate vc from Eq. 4.4-2 gives

»-H ?) Vb _
Solving for vb gives

vo= 7V
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Example 4.4-2

4ur
Determine the node voltages for the circuit shown in Figure 4.4-2.
Solution
The controlling voltage of the dependent source is vx. Our first task 0 a
is to express this voltage as a function of the node voltages:
VX = -va
The difference between the node voltages at nodes a and b is set
by voltage of the dependent source:
va- b= 4vx= 4(—va) = -4 va
Simplifying this equation gives
Vb= 5va (44'3)
Applying KCL to the supemode corresponding to the dependent voltage source gives
= —+ = 4.4-4
4 10 ( )
Using Eqg. 4.4-3 to eliminate w, from Eq. 4.4-4 gives
va 5Sva 3
4" To"= 4\a
Solving for va, we get
va= 4V
.Finally, \b= 5va= 20V
Example 4.4-3
Detemune the node voltages corresponding to nodes a and b for the circuit .
shown in Figure 4.4-3. F— VA e VW-----f
Solution Y 2l beacl

The controlling current of the dependent source is ia. Our first task is to express
this current as a function of the node voltages. Apply KCL at node a to get
6-v,_ . tva- MW
10 ~'a 20
Node a is connected to the reference node by a short circuit, so va= 0 V.
Substituting this value of vainto the preceding equation and simplifying gives
12+ W
20

FIGURE 4.4-3 A circuit with a CCCS.

(4.4-5)
Next, apply KCL at node b to get
0- W
20
Using Eq. 4.4-5 to eliminate ia from Eq. 4.4-6 gives
00—\ /112 + \b>
20

= 5L (4.4-6)

Solving for vb gives
Vi, = -10 V
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EXERCISE 4.4-1 Find the node voltage vb for the circuit shown in Figure E 4.4-1.

Hint: Apply KCL at node a to express iaas a function of the node voltages. Substitute the result into
= 4/a and solve for W,

Answer: — + ——" =0 => " =45V
8 4 12
EXERCISE 4.4-2 Find the node voltages for the circuit shown in Figure E 4.4-2.

Hint: The controlling voltage of the dependent source is a node voltage, so it is already expressed as a
function of the node voltages. Apply KCL at node a.

.aW ,.. N +*L N =0 * v,= -2V
20 15

45 MESH CURRENT ANALYSIS WITH
INDEPENDENT VOLTAGE SOURCES

In this and succeeding sections, we consider the analysis of circuits using KirchhofFs voltage law
(KVL) around a closed path. A closed path or a loop is drawn by starting at a node and tracing a path
such that we return to the original node without passing an intermediate node more than once.

A mesh is a special case of a loop.

A mesh is a loop that does not contain any other loops within it.

Mesh current analysis is applicable only to planar networks. A planar circuit is one that can be
drawn on a plane, without crossovers. An example of a nonplanar circuit is shown in Figure 4.5-1, in
which the crossover is identified and cannot be removed by redrawing the circuit. For planar networks,
the meshes in the network look like windows. There are four meshes in the circuit shown in Figure 4.5-2.

Crossover

FIGURE 4.5-1 Nonplanar circuit with a crossover.
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FIGURE 4.5-2 Circuit with four meshes. Each mesh is
identified by dashed lines.

They are identified as A/,. Mesh 2 contains the elements /?3, /?4, and R5. Note that the resistor R3 is
common to both mesh 1 and mesh 2.

We define a mesh current as the current that flows through the elements constituting the mesh.
Figure 4.5-3tf shows a circuit having two meshes with the mesh currents labeled as i\ and i2. We will use
the convention of a mesh current flowing clockwise as shown in Figure 4.5-3a. In Figure 4.5-36, ammeters
have been inserted into the meshes to measure the mesh currents.

One of the standard methods for analyzing an electric circuit is to write and solve a set of
simultaneous equations called the mesh equations. The unknown variables in the mesh equations are
the mesh currents of the circuit. We determine the values of the mesh currents by solving the mesh
equations.

To write a set of mesh equations, we do two things:

1. Express element voltages as functions of the mesh currents

2. Apply KirchhofFs voltage law (KVL) to each of the meshes of the circuit

Consider the problem of expressing element voltages as functions of the mesh currents. Although
our goal is to express element voltages as functions ofthe mesh currents, we begin by expressing element
currents as functions ofthe mesh currents. Figure 4.5-36 shows how this is done. The ammeters in Figure
4.5-36 measure the mesh currents, ij and i2. Elements C and E are in the right mesh but not in the left
mesh. Apply KirchhofFs current law at node ¢ and then at node fto see that the currents in elements C and

(b)

FIGURE 4.5-3 (&) A circuit with two meshes. (&) Inserting ammeters to measure the mesh orrents,
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FIGURE 4.5-4 Mesh currents, i, and i2, and element current, ii - i2, of a (a) generic circuit element, (b) current
source, and (C) resistor.

E are equal to the mesh current of the right mesh, /2, as shown in Figure 4.5-36. Similarly, elements A and
D are only in the left mesh. The currents in elements A and D are equal to the mesh current of the left
mesh, ™, as shown in Figure 4.5-36.

Element B is in both meshes. The current of element B has been labeled as 2. Applying
Kirchhoffs current law at node b in Figure 4.5-3b gives

“=h~h

This equation expresses the element current, b, as a function of the mesh currents, i\ and i2.

Figure 4.5-4a shows a circuit element that is in two meshes. The current of the circuit element is
expressed as a function of the mesh currents of the two meshes. The circuit element in Figure 4.5-4a
could be anything: a resistor, a current source, a dependent voltage source, and so on. In Figures 4.5-46
and c, we consider specific types of circuit element. In Figure 4.5-46, the circuit element is a current
source. The element current has been represented twice, once as the current source current, 3 A, and
once as a function of the mesh currents, i\ —i2. Noticing that the reference directions for 3 A and
j] — 12 are different (one points up, the other points down), we write

-3 =i\ -2

This equation relates the values of two of the mesh currents.

Next consider Figure 4.5-4c. In Figure 4.5-4c, the circuit element is a resistor. We will use Ohm’s
law to express the resistor voltage, v, as functions of the mesh currents. First, we express the resistor
current as a function of the mesh currents, i\ —i2. Noticing that the resistor current, i\ —i2, and the
voltage, v, adhere to the passive convention, we use Ohm’s law to write

v=R(ij - i2)
Frequently, we know the value of the resistance. For example, when * = 80, this equation becomes
v= 8(* - i2)

This equation expresses the resistor voltage, v, as a function of the mesh currents, ixand i2.

Next, let’s write mesh equations to represent the circuit shown in Figure 4.5-5a. The input to this
circuit is the voltage source voltage, vs. To write mesh equations, we will first express the resistor
voltages as functions of the mesh currents and then apply Kirchhoffs voltage law to the meshes. The
resistor currents are expressed as functions of the mesh currents in Figure 4.5-56, and then the resistor
voltages are expressed as functions of the mesh currents in Figure 4.5-5c.

We may use Kirchhoffs voltage law around each mesh. We will use the following convention
for obtaining the algebraic sum of voltages around a mesh. We will move around the mesh in the
clockwise direction. Ifwe encounter the + sign ofthe voltage reference polarity of an element voltage
before the - sign, we add that voltage. Conversely, if we encounter the - of the voltage reference
polarity of an element voltage before the + sign, we subtract that voltage. Thus, for the circuit of
Figure 4.5-5c, we have

mesh L -vs+ /?,/, + R2(i{- i2)= 0 (4.5-1)
mesh 2. -R 3(i\ - i2) + R2i2= 0 (4.5-2)
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(@) (b)
+ Njlj — + #2°2°

FIGURE 4.5-5 (a) A circuit. (b) The resistor currents expressed as functions of the mesh currents, (c) The resistor
voltages expressed as functions of the mesh currents.
Note that the voltage across R$ in mesh 1 is determined from Ohm's law, where
v = RiU = R3(i\ - ii)
where ia is the actual element current flowing downward through R3.

Equations 4.5-1 and 4.5-2 will enable us to determine the two mesh currents, ij and i2- Rewriting
the two equations, we have

i\(Ri+ ~3)“ hR} —v5
and

—i\R$ -f 12(*3 *mR2) = 0
IfR\ = R2= R3= 1n, we have

2\ - 2= vs
and
—4i+25=0
Add twice the first equation to the second equation, obtaining 3/i = 2vs. Then we have

=2 andiz = \°

Thus, we have obtained two independent mesh current equations that are readily solved for the
two unknowns. If we have N meshes and write N mesh equations in terms of N mesh currents, we can
obtain N independent mesh equations. This set of N equations is independent and thus guarantees a
solution for the N mesh currents.

A circuit that contains only independent voltage sources and resistors results in a specific format
of equations that can readilybeobtained. Consider acircuit with three meshes, asshown in Figure
4.5-6. Assign the clockwise direction to all ofthe mesh  currents. Using KVL, weobtain the threemesh

R2
-AMr-

FIGURE 4.5-6 Circuit with three
mesh currents and two voltage sources.

©
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equations
meshl: -vs+ R\\ + /24(*i —2) = 0
mesh 2: R2I12+ Rs(h ~ h) + 2 (*2 —i) =0
mesh 3: Rs(h ~ h) + Rih + vg 30
These three mesh equations can be rewritten by collecting coefficients for each mesh current as
mesh 1. (R\ + /?4)*i —"4*2 = vs
mesh 2: — 411 -bR5-f (R4+ ~2 Rs)h ~ Rsh — 0
mesh 3: —R512+ {R34-Rs)h —~vg
Hence, we note that the coefficient of the mesh current i\ for the first mesh is the sum of
resistances in mesh land the coefficient of the second mesh current is the negative of the resistance
common to meshes 1 and 2.In general, we state that for mesh currentthe equation  for the nth nesh
with independent voltage sources only is obtained as follows:
Q p n
- A Rkig+ "2 Rji,, = - Y2 vsn (4.5-3)
g j n=1
That is, for mesh n we multiply in by the sum of all resistances Rj around the mesh. Then we add the
terms due to the resistances in common with another mesh as the negative of the connecting resistance
Rk, multiplied bythe mesh current in the adjacent mesh iq for all Q adjacentmeshes. Finally,the
independent voltage sources around the loop appear on the right side of the equation asthe negative of
the voltage sources encountered as we traverse the loop in the direction of the mesh current.
Remember that the preceding result is obtained assuming all mesh currents flow clockwise.
The general matrix equation for the mesh current analysis for independent voltage sources
present in a circuit is

Ri=vs (4.5-4)

whereR is a symmetric matrix with a diagonal consisting of the sum ofresistances in each mesh and
the off-diagonal elements arethe negative of the sum of the resistances common to two meshes. The
matrix i consists of the mesh current as

For N mesh currents, the source matrix vs is

vsN
where vsj is the algebraic sum of the voltages of the voltage sources in the yth mesh with the
appropriate sign assigned to each voltage.
For the circuit of Figure 4.5-6 and the matrix Eq. 4.5-4, we have

“{R1+R4) -R4 0
—R4  {R2+ R4+ R5) —R5
0 -R5 (*3 + *5).

Note that R is a symmetric matrix, as we expected.
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EXERCISE 4.5-1 Determine the value of the voltage measured by the voltmeter in Figure

E 4.5-1.
60

FIGURE E 4.5-1

Answer: —1V

46 MESH CURRENT ANALYSIS WITH
CURRENT AND VOLTAGE SOURCES

Heretofore, we have considered only circuits with independent voltage sources for analysis by the
mesh current method. If the circuit has an independent current source, as shown in Figure 4.6-1, we
recognize that the second mesh current is equal to the negative of the current source current. We can
then write

h=-~h
and we need only determine the first mesh current ix Writing KVL for the first mesh, we obtain
{R\ + R2)ii - Riii = vs
Because i2 = —i*, we have
vs- Rih
i\ = 4.6-1
M= R e R (4.6-1)

where /s and v5are sources of known magnitude.
If we encounter a circuit as shown in Figure 4.6-2, we have a current source is that has an
unknown voltage vab across its terminals. We can readily note that

n~=*=h (4-6-2)

by writing KCL at node a. The two mesh equations are
mesh I +vdb =, (4.6-3)
mesh 2. (R2+ R))i2- véb=10 (4.6-4)

FIGURE 4.6-1 Circuit with an independent voltage @FIGURE 4.6-2 Circuit with an independent current
source and an independent current source. source common to both meshes.
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We note that if we add Egs. 4.6-3 and 4.6-4, we eliminate vab, obtaining
R\i\ £ (*2 + Ri)h —wvs
However, because i2 = /s+ /1, we obtain
R\i\ + (R2-fR?)(h 4-/1) = vs
or
= vr- (* 2+ *3)] (4.6-5)
*1 + *2 “T*3

Thus, we account for independent current sources by recording the relationship between the mesh
currents and the current source current. 1fthe current source influences only one mesh current, we write
the equation that relates that mesh current to the current source current and write the KVL equations for
the remaining meshes. If the current source influences two mesh currents, we write the KVL equation for

both meshes, assuming a voltage vab across the terminals of the current source. Then, adding these two
mesh equations, we obtain an equation independent of vab.

Example 4.6-1 Mesh Equations

4 A
Consider the circuit of Figure 4.6-3 where R\ = R2= \ Cl and
*3=2 0. Find the three mesh currents.
Solution
Because the 4-A source is in mesh 1 only, we note that
A =4
For the 5-A source, we have
0 _-.*3=§ (4.6-6) FIGURE 4.6-3 Circuit with two independent
current sources.

Writing KVL for mesh 2 and mesh 3, we obtain

mesh 2: Rx(i2 — f vab= 10 (4.6-7)

mesh 3: R2(i3- i}) + *38 -vab=0 (4.6-8)
We substitute i\ = 4 and add Eqgs. 4.6-7 and 4.6-8 to obtain

*1(*2- 4) + *213 - 4) + *33 = 10 (4.6-9)

From Eq. 4.6-6, i2 = 5 + 13, substituting into Eq. 4.6-9, we have

*1(s + *3 - 4y 4 rRzin — ay + *3/3 = 10

Using the values for the resistors, we obtain

w= 13 A and i2& 5+ /3=—3A&

Another technique for the mesh analysis method when a current source is common to two

meshes involves the concept of a supermesh. A supermesh is one mesh created from two meshes that
have a current source in common, as shown in Figure 4.6-4.
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2U

20.

FIGURE 4.6-4 Circuit with a supermesh
that incorporates mesh 1and mesh 2.
The supermesh is indicated by the dashed line.

A supermesh is one larger mesh created from two meshes that have an independent or
dependent current source in common.

For example, consider the circuit of Figure 4.6-4. The 5-A current source is common to mesh |
and mesh 2. The supermesh consists of the interior of mesh 1and mesh 2. Writing KVVL around the
periphery of the supermesh shown by the dashed lines, we obtain

-10 + I(ii- h) + 3(i2- h) + 22 =0
For mesh 3, we have
1(*3 ~ I'l) + 2i3+ 3(I13 ~ *2) = 0
Finally, the equation that relates the current source current to the mesh currents is
M- 2=5
Then the three equations may be reduced to

supermesh: \i\ + 52 —4/3 =10

mesh 3: —Ai\ —32+63 =0

current source: 11 —1#2 =5
Therefore, solving the three equations simultaneously, we find that i2= 2.5A,i\ = 15 A, and
13 = 2.5A.

The methods of mesh current analysis used when a current source is present are summarized
in Table 4.6-1.

Mesh Current Analysis Methods with a Current Source

CASE METHOD
1 Acurrent source appears on the Equate the mesh current into the current source current, accounting for the
periphery of only one mesh, n. direction of the current source.

2. Acurrent source iscommon to two A, Assume a voltage vab across the terminals of the current source, write the
meshes. kv I equations for the two meshes, and add them to eliminate vab,
or,
B. create a supermesh as the periphery of the two meshes and write one KVL
equation around the periphery of the supermesh. In addition, write the

constraining equation for the two mesh currents in terms of the current
source.
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Example 4.6-2 Supermeshes

Determine the values of the mesh currents, /, and i2, for the circuit shown in Figure 4.6-5.

ofl 31) 30
W - -AAAr

-V W -

15 a() len 12V© ~7) 15A()° C ) 6Q

FIGURE 4.6-5 The circuit for Example 4.6-2. FIGURE 4.6-6 Method 10f Example 4.6-2.

Solution
We can write the first mesh equation by considering the current source. The current source current is related to the

mesh currents by
i\ —2 —15 i\ —/2 - 15

To write the second mesh equation, we must decide what to do about the current source voltage. (Notice that there
is no easy way to express the current source voltage in terms of the mesh currents.) In this example, we illustrate
two methods of writing the second mesh equation.

Method 1. Assign a name to the current source voltage. Apply KVLto both of the meshes. Eliminate the
current source voltage from the KVL equations.

Figure 4.6-6 shows the circuit after labeling the current source voltage. The KVL equation for mesh 1lis

N+v—=>2=0

The KVL equation for mesh 2 is
32+ 6/2—v=20
Combining these two equations gives

N+ F2+620-12 =0 AN+ R= 12

Method 2: Apply KVL to the supermesh corresponding to the current source. Shown in Figure 4.6-7, this
supermesh is the perimeter ofthe two meshes that each contain the current source. Apply KVL to the supermesh to get

9fi + 32+6/2-12 =0 = 9h + 92 =12
This is the same equation that was obtained using method 1. Applying KVL to the supermesh is a shortcut for
doing three things:
1. Labeling the current source voltage as v
2. Applying KM to both meshes that contain the current source
3 Eliminating Vfrom the KM equations

9ft 3Q
TNAV -- fr VW -

12 v 60

FIGURE 4.6-7 Method 2 of Example 4.6-2.
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In summary, the mesh equations are
il=h+ 15
and 9i\ 4-9/2 = 12

Solving the node equations gives

/, = 14167A and 2= -83.3 mA

EXERCISE 4.6-1 Determine the value of the voltage measured by the voltmeter in
Figure E 4.6-1.

9V

FIGURE E 4.6-1
Hint: Write and solve a single mesh equation to determine the current in the 3 H resistor.

Answer: 4V

EXERCISE 4.6-2 Determine the value of the current measured by the ammeter in Figure

FIGURE E 4.6-2

Hint: Write and solve a single mesh equation.

Answer: —3.67 A

47 MESH CURRENT ANALYSIS
WITH DEPENDENT SOURCES

When a circuit contains a dependent source the controlling current or voltage of that
dependent source must be expressed as a function of the mesh currents.

It is then a simple matter to express the controlled current or voltage as a function of the mesh

currents. The mesh equations can then be obtained by applying Kirchhoff s voltage law to the
meshes of the circuit.
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Example 4.7-1 Mesh Equations and INTERACTIVE EXAMPLE
Dependent Sources

Consider the circuit shown in Figure 4.7-1a. Find the value of the voltage measured by the voltmeter.

(a)

FIGURE 4.7-1 (a) The circuit
considered in Example 4.7-1.

24 v (b) The circuit after replacing the
voltmeter by an open circuit.
(c) The circuit after labeling the

(b) (c) meshes.

Solution
Figure 4.7-16 shows the circuit after replacing the voltmeter by an equivalent open circuit and labeling the
voltage, vm, measured by the voltmeter. Figure 4.7-lc shows the circuit after numbering the meshes. Let i\ and i2
denote the mesh currents in meshes 1 and 2, respectively.

The controlling current of the dependent source, ia, is the current in a short circuit. This short circuit is
common to meshes 1 and 2. The short-circuit current can be expressed in terms of the mesh currents as

h=M-nh
The dependent source is in only one mesh, mesh 2. The reference direction of the dependent source current does
not agree with the reference direction of i2. Consequently,

5/a= ~h
Solving for i2 gives
h ——b/a——5(zi —i2)

Therefore, -4i2= -5z, =» 2= |/j
Apply KVL to mesh 1to get
32/11—24 =0 = [j=-A

Consequently, the value of i2 is

«+- 5f31 15A
‘2 4V4l 16

Apply KVL to mesh 2 to get
322 vm—0 vm — 32/2

Finally, v.=32(1]) =3°v
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Example 4.7-2 Mesh Equations and INTERACTIVE EXAMPLE

Dependent Sources

Consider the circuit shown in Figure 4.7-2a. Find the value of the gain, A, of the CCVS.

()
10 Q 4Q

(b)
FIGURE 4.7-2 (a) The circuit considered in Example 4.7-2. (b) The circuit after replacing the voltmeter by an open circuit,
(c) The circuit after labeling the meshes.

Solution
Figure 4 7-26 shows the circuit after replacing the voltmeter by an equivalent open circuit and labeling the voltage

measured by the voltmeter. Figure 4.7-2c shows the circuit after numbering the meshes. Let i\ and i2denote the

mesh currents in meshes 1 and 2, respectively.
The voltage across the dependent source is represented in two ways. It is Aia with the + of reference

direction at the bottom and —7.2 V with the 4- at the top. Consequently,
Aia= —(—4.2) =72V

The controlling current of the dependent source, z, is the current in a short circuit. This short circuit is common to
meshes 1and 2. The short-circuit current can be expressed in terms of the mesh currents as

Apply KVL to mesh 1to get
IOfi —36=0 = i\ =36A
Apply KVL to mesh 2 to get
42+ (-7.2) = 0 2= 18A

Finally, a = = 4v/A

m h—D 36—18
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48 THE NODE VOLTAGE METHOD AND
MESH CURRENT METHOD COMPARED —

The analysis ofa complex circuit can usually be accomplished by either the node voltage or the mesh
current method. The advantage of using these methods is the systematic procedures provided for
obtaining the simultaneous equations.

In some cases, one method is clearly preferred over another. For example, when the circuit contains
only voltage sources, it is probably easier to use the mesh current method. When the circuit contains only
current sources, it will usually be easier to use the node voltage method.

If a circuit has both current sources and voltage sources, it can be analyzed by either method.
One approach is to compare the number of equations required for each method. If the circuit has fewer
nodes than meshes, it may be wise to select the node voltage method. If the circuit has fewer meshes
than nodes, it may be easier to use the mesh current method.

Another point to consider when choosing between the two methods is what information is
required. If you need to know several currents, it may be wise to proceed directly with mesh current
analysis. Remember, mesh current analysis only works for planar networks.

It is often helpful to determine which method is more appropriate for the problem requirements
and to consider both methods.

Example 4.8-1 Mesh Equations INTERACTIVE EXAMPLE

Consider the circuit shown in Figure 4.8-1. Find the value of the resistance, R.

2ti
05A 1

Ammeter Q

FIGURE 4.8-1 The circuit considered in Example 4.8-1.

Solution

Figure 4.8-2a shows the circuit from Figure 4.8-1 after replacing the ammeter by an equivalent short circuit and
labeling the current measured by the ammeter. This circuit can be analyzed using mesh equations or using node
equations. To decide which will be easier, we first count the nodes and meshes. This circuit has five nodes. Selecting a

1A 1A
-e- He-
2 £2 2n 2a 2n
—— VW a "WV AWV e FIGURE 4.8-2 (a) The
" circuit from Figure 4.8-

{0.5 A | g ~A 1after replacing the

6 tl 120 6a 129 ammeter by a short

w v Y VARV — 1 W NT AAA- circuit. (b) The circuit

after labeling the
(a) ib) meshes.
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reference node and then applying KCL at the other four nodes will produce a set of four node equations. The circuit
has three meshes. Applying KVL to these three meshes will produce a set of three mesh equations. Hence, analyzing
this circuit using mesh equations instead ofnode equations will produce a smaller set ofequations. Further, notice that
two of the three mesh currents can be determined directly from the current source currents. This makes the mesh
equations easier to solve. We will analyze this circuit by writing and solving mesh equations.

Figure 4.8-26 shows the circuit after numbering the meshes. Let iu i2, and i3 denote the mesh currents in
meshes 1, 2, and 3, respectively. The mesh current /j is equal to the current in the 1-A current source, So

i = 1A

The mesh current i2 is equal to the current in the 3-A current source, so

Consider the circuit showm in Figure 4.8-3. Find the value of the resistance, R.
231

labeling the voltage measured by the voltmeter. This circuit can be analyzed using mesh equations or node equations.
To decide which will be easier, we first count the nodes and meshes. This circuit has four nodes. Selecting a reference
node and then applying KCL at the other three nodes will produce a set of three node equations. The circuit has three
meshes. Applying KVL to these three meshes will produce a set of three mesh equations. Analyzing this circuit using
mesh equations requires the same number of equations as are required to analyze the circuit using node equations.
Notice that one of the three mesh currents can be determined directly from the current source current, but two of the
three node voltages can be determined directly from the voltage source voltages. This makes the node equations
easier to solve. We will analyze this circuit by writing and solving node equations.

Figure 4.8-46 shows the circuit after selecting a reference node and numbering the other nodes. Let vb v2,
and v3denote the node voltages at nodes 1,2, and 3, respectively. The voltage of the 16-V voltage source can be
expressed in terms of the node voltages as

6=v, -0 > Vv, =16V
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2Q

<D

FIGURE 4.8-4 (a) The
circuit from Figure 4.8-3
after replacing the
voltmeter by an open
circuit. (b) The circuit
after labeling the

(a) <h) nodes.

The voltage of the 18-V voltage source can be expressed in terms of the node voltages as
8=vi—\V = 18=16 —\ = W= 22V
The voltmeter measures the node voltage at node 3, so
v3= 16V
Applying KCL at node 3 to get

49 MESH CURRENT ANALYSIS USING MATLAB

We have seen that circuits that contain resistors and independent or dependent sources can be analyzed
in the following way:

1. Writing a set of node or mesh equations

2. Solving those equations simultaneously

In this section, we will use the MATLAB computer program to solve the equations.

Consider the circuit shown in Figure 4.9-1a. This circuit contains a potentiometer. In Figure
4.9-16, the potentiometer has been replaced by a model of a potentiometer. Rp is the resistance of

fla=tip R5=(l-a)Rp R2
AAN— 0—VW—

(b)

FIGURE 4.9-1 (a) A circuit that contains a potentiometer and (b) an equivalent circuit formed by replacing the
potentiometer with a model of a potentiometer (0 < a < 1).
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the potentiometer. The parameter a varies from 0 to 1 as the wiper of the potentiometer is moved

from one end of the potentiometer to the other. The resistances R4 and R s are described by the

equations

and

/f5 = (1 — a)Rp (4.9-2)

Our objective is to analyze this circuit to determine how the output voltage changes as the position of

the potentiometer wiper is changed.

% mesh.m solves mesh equations

% Enter values of the parameters that describe the circuit.

% circuit parameters

R1=1000; % ohms
R2=1000; % ohms
R3 =5000; % ohms
Vi= 15; % volts
V2=-15; % volts

% potentiometer parameters
Rp=20e3; % ohms

% the parameter a varies from 0 to 1 in 0.05 increments.

%

a=0:0.05:1; % dimensionless

for (l)(:lilength(a)

g;o Here is the mesh equation, RI=V:
0

R = [RI+a (k) *Rp+R3 -R3; [ —
-R3 (1-a(k) )*Rp+R2+R3] % eqn.

V= [ VI; % 4.9-6

-v2] ; U mmmmmmemm

% Tell MATLAB to solve the mesh equation:

1 =V"/R;

% Calculate the output voltage from the mesh currents.

Vo (K) = R3*(1 (1) - 1(2)) ;% eqn. 4.9-7

end

% Plot Vo versus a
plot(a, Vo)

axis([0 1 -15 15])
xlabel("a, dimensionless™)
ylabel ("Vo, V©)

FIGURE 4.9-2 MATLAB input file used to analyze the circuit shown in Figure 4.9-1.
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The circuit in Figure 4.9-1b can be represented by mesh equations as

R[I\ + R4i\ 4- (i\ —h) —Mi =0

Rsh 4-Rih 4- 2—R$(i\ —®2)]= 0

These mesh equations can be rearranged as
(R\ 4-Ra 4-R$)|\ —Rih — i (4.9-4)
—JI3If -h {R5 + 72+ 32 —~ V2
Substituting Egs. 4.9-1 and 4.9-2 into Eq. 4.9-4 gives
4-aRp 4 R$)i\ —*32=vi

(4.9-3)

. (4.9-5)
—?3%-f [l —a)Rp 4 Ri+ *3lh — 2
Equation 4.9-5 can be written using matrices as
R\ 4-aRp 4-R3 —723 h M
—73 (1 4R24R3 _ v2_
(4.9-6)

Next, zj and i2 are calculated by using MATLAB to solve the mesh
equation, Eq. 4.9-6. Then the output voltage is calculated as

Ve = *3(#-*2) (4.9-7)

Figure 4.9-2 shows the MATLAB input file. The parameter

a, dimensionless . .
a varies from 0 to 1 in increments of 0.05. At each value of a,

FIGURE 4.9-3 Plot of vQuersus a for the circuit shown  MATLAB solves Eq. 4.9-6 and then uses Eq. 4.9-7 to calculate the

in Figure 4.9-1.

output voltage. Finally, MATLAB produces the plot of vGversus a
that is shown in Figure 4.9-3.

410 USING PSPICE TO DETERMINE
NODE VOLTAGES AND MESH CURRENTS

To determine the node voltages of a dc circuit using PSpice, we

1. Draw the circuit in the OrCAD Capture workspace
2. Specify a ‘Bias Point’ simulation

3. Run the simulation

PSpice will label the nodes with the values of the node voltages.

An extra step is needed to use PSpice to determine the mesh currents. PSpice does not label the
values of the mesh currents, but it does provide the value of the current in each voltage source. Recall
that a 0-V voltage source is equivalent to a short circuit. Consequently, we can insert 0-V current
sources into the circuit without altering the values of the mesh currents. We will insert those sources

into the circuit in such a way that their currents are also the mesh currents. To determine the mesh
currents of a dc circuit using PSpice, we

1. Draw the circuit in the OrCAD Capture workspace.
2. Add 0-V voltage sources to measure the mesh currents.
3. Specify a Bias Point simulation.

4, Run the simulation.

PSpice will write the voltage source currents in the output file.



Using PSpice to Determine Node Voltages and Mesh Currents

Example 4.10-1 UsingPSpicetoFindNode Voltages
and Mesh Currents
\

Use PSpice to determine the values of the node voltages and mesh currents for the circuit shown in Figure 4.10-1

15 itiiaa
-AAAr
— VW

25
0Q ¢ 10 02A(3

FIGURE 4.10-1 A circuit having node voltages vb v2, v3

and va and mesh currents ij, i2, 13, and i4. FIGURE 4.10-2 The circuit from Figure 4.10-1 drawn

in the OrCAD workspace. The white numbers shown
on black backgrounds are the values of the node voltages.

Solution
Figure 4.10-2 shows the result of drawing the circuit in the OrCAD workspace (see Appendix A) and performing a

Bias Point simulation. (Select PSpiceYNew Simulation Profile from the OrCAD Capture menu bar; then choose
Bias Point from the Analysis Type drop-down list in the Simulation Settings dialog box to specify a bias point
simulation. Select PSpice\Run Simulation Profile from the OrCAD Capture menu bar to run the simulation.)
PSpice labels the nodes with the values of the node voltages using white numbers shown on black backgrounds.
Comparing Figures 4.10-1 and 4.10-2, we see that the node voltages are

vi = -6.106 V,v2= -10.61 V,v3= 2234V, andv4 = -7.660 V.

Figure 4.10-3 shows the circuit from Figure 4.10-2 after inserting a 0-V current source on the outside of each
mesh. The currents in these 0-V sources will be the mesh currents shown in Figure 4.10-1. In particular, source V2
measures mesh current ij, source V3 measures mesh current 2, source V4 measures mesh current /3, and source
V5 measures mesh current i4.

After we rerun the simulation (Select PSpiceYRun from the OrCAD Capture menu bar), OrCAD Capture
will open a Schematics window. Select View\Output File from the menu bar in the Schematics window. Scroll

V2 Ovde
-AAAr- ih—
5
Vil 30V
me -
0.5A
20 25
0.2A
FIGURE 4.10-3 The circuit from Figure 4.10-1 drawn in
VB OVle— q W4 OMie V3 OV the OrCAD workspace with 0-V voltage sources added

to measure the mesh currents.
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down through the output file to find the currents in the voltage sources:

VOLTAGE SOURCE CURRENTS

NAME CURRENT
V_V1 - 6.170E - 01
V_V2 3.106E - 01
V_V3 - 3.064E - 01
V_V4 8.106E - 01
V_V5 6.106E - 01

TOTAL POWER DISSIPATION 1.85E + 01 WATTS
JOB CONCLUDED

PSpice uses the passive convention for the current and voltage of all circuit elements, including voltage sources.
Noticing the small + and - signs on the voltage source symbols in Figure 4.10-3, we see that the currents
provided by PSpice are directed form left to right in sources VI and V2 and are directed from right to left in
sources V3, V4, and V5. In particular, the mesh currents are

ix=0.3106 A,i2= 0.6106 A,i3= 0.8106 A. and/4 = -0.3064 A.

411 HOW CAN WE CHECK ... ?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For
example, proposed solutions to design problems must be checked to confirm that all of the
specifications have been satisfied. In addition, computer output must be reviewed to guard against
data-entry errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example,
occasionally just a little time remains at the end of an exam. It is useful to be able quickly to identify
those solutions that need more work.

The following examples illustrate techniques useful for checking the solutions of the sort of
problem discussed in this chapter.

------------------- Example 4.11-1 How Can We Check Node Voltages?

The circuit shown in Figure 4.1 |-1a was analyzed using PSpice. The PSpice output file. Figure 4.11-16, includes
the node voltages of the circuit. How can we check that these node voltages are correct?

Solution
The node equation corresponding to node 2 is
V(2) —=Vv() V(@) V(2)-V(3)_
100 200 100
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Node Voltage Example

Vi 1 0 12
RI 1 2 100
R2 2 0 200
R3 2 3 200
R4 3 0 200
R5 3 4 200
V2 4 0 8
END

NODE VOLTAGES
NODE VOLTAGE

Elg 12.0000

8V 2 7.2727
®) 5.0909
@ 8.0000

(b)

FIGURE 4.11-1 () A circuit and (b) the node voltages calculated using PSpice. The bottom node has been chosen as the
reference node, which is indicated by the ground symbol and the node number 0. The voltages and resistors have units of voltages
and ohms, respectively.

where, for example, V(2) is the node voltage at node 2. When the node voltages from Figure 4.11-16 are
substituted into the left-hand side of this equation, the result is

7.2727 - _12 . 7.2727 . 3.2727 5.0909 - 0011

100 200 100
The right-hand side of this equation should be 0 instead of 0.011. It looks like something is wrong. Is a current of
only 0.011 negligible? Probably not in this case. Ifthe node voltages were correct, then the currents of the 100-H
resistors would be 0.047 A and 0.022 A, respectively. The current of 0.011 A does not seem negligible when
compared to currents of 0.047 A and 0.022 A.
Is it possible that PSpice would calculate the node voltages incorrectly? Probably not, but the PSpice
input file could easily contain errors. In this case, the value of the resistance connected between nodes 2 and

3 has been mistakenly specified to be 200 fl. After changing this resistance to 100 O, PSpice calculates the
node voltages to be

V(\) = 120, V(2) = 7.0, F(3) = 55, V(4) = 8.0
Substituting these voltages into the node equation gives

7.0-12.0 7.0 7.0-5.5

100 + 200+ 100 0.0

"so these node voltages do satisfy the node equation corresponding to node 2.
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Example 4.11-2 How Can We Check Mesh Currents?

The circuit shown in Figure 4.11-2a was analyzed using PSpice. The PSpice output file, Figure 4.11 -26, includes
the mesh currents of the circuit. How can we check that these mesh currents are correct?

M esh Current Example

100
200
8

200

500

250
250

2
3
4
4
5
6 0
6
7
0 0
0

<
B O

250
END
MESH CURRENTS

NAME CURRENT

11 1. 763E-02
12 — 4 06 8E-03

13 — 1.3 56E-03

(a) (b)

FIGURE 4.11-2 (a) A circuit and (b) the mesh currents calculated using PSpice. The voltages and resistances are given in volts
and ohms, respectively.

(The PSpice output file will include the currents through the voltage sources. Recall that PSpice uses the
passive convention, so the current in the 8-V source will be -i\ instead of i{. The two 0-V sources have been added
to include mesh currents i2 and i3 in the PSpice output file.)

Solution
The mesh equation corresponding to mesh 2 is

200(/2 —i*) + 500/2 4- 250(/2 —i3) = 0
When the mesh currents from Figure 4.11-26 are substituted into the left-hand side of this equation, the result is
200(—0.004068—0.01763) + 500(-0.004068) + 250(-0.004068 - (-0.001356)) = 1.629

The right-hand side of this equation should be 0 instead of 1.629. It looks like something is wrong. Most likely, the
PSpice input file contains an error. This is indeed the case. The nodes of both 0-V voltage sources have been

entered in the wrong order. Recall that the first node should be the positive node of the voltage source. After
correcting this error, PSpice gives

i « 0.01763, 2= 0.004068, /3= 0.001356
Using these values in the mesh equation gives
200(0.004068—0.01763) + 500(0.004068) + 250(0.004068 - 0.001356) = 0.0

These mesh currents do indeed satisfy the mesh equation corresponding to mesh 2.



Design Example

| 4.12 DESIGN EXAMPLE

POTENTIOMETER ANGLE DISPLAY

A circuit is needed to measure and display the angular position of a potentiometer shaft. The
angular position, 0, will vary from -180° to 180°.

Figure 4.12-1 illustrates a circuit that could do the job. The +15-V and -15-V power
supplies, the potentiometer, and resistors Ri and R2 are used to obtain a voltage, v,, that is
proportional to G The amplifier is used to change the constant of proportionality to obtain a
simple relationship between 0 and the voltage, vG displayed by the voltmeter. In this example,
the amplifier will be used to obtain the relationship

v0= k -Owherek = 0.1 — (4.12-1)
degree
so that O can be determined by multiplying the meter reading by 10. For example, a meter
reading of -7.32 V indicates that 0 = —73.2°.

Describe the Situation and the Assumptions

The circuit diagram in Figure 4.12-2 is obtained by modeling the power supplies as ideal
voltage sources, the voltmeter as an open circuit, and the potentiometer by two resistors.
The parameter, a, in the model of the potentiometer varies from 0 to 1 as O varies from
-180° to 180°. That means

(4.12-2)

+15V

FIGL RE 4.12-1 Proposed circuit for measuring and displaying the angular position of the potentiometer shaft.

voltmeter, and potentiometer.
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Solving for 9 gives

0=(a -0-360° (4.12-3)

State the Goal
Specify values of resistors R\ and R2, the potentiometer resistance RP, and the amplifier gain b
that will cause the meter voltage, vG to be related to the angle 9 by Eq. 4.12-1.

Generate a Plan

Analyze the circuit shown in Figure 4.12-2 to determine the relationship between v, and 9.
Select values of Ru R2, and Rp. Use these values to simplify the relationship between \f and
9. If possible, calculate the value of b that will cause the meter voltage, vQ to be related to
the angle 9 by Eq. 4.12-1. If this isn’t possible, adjust the values of R\, R2, and Rp and try
again.

Act on the Plan
The circuit has been redrawn in Figure 4.12-3. A single node equation will provide the
relationship between between v, and 9:

vj vj —15 vj —(—15)
2 +/?,+ aRp+ R2+ (1 - a)Rp=

Solving for vj gives

2Mn(*,(2a—1) + *,—*2)15
1 (/?, + aRp)(R2+ (\~ a)Rp) + 2 + R24-*p)
This equation is quite complicated. Let’s put some restrictions on R\,R 2, and Rpthat will make

it possible to simplify this equation. First, let R\ = R2=R. Second, require that both R and Rpbe
much smaller than 2 Mfl (for example, R < 20kfl). Then,

(R+aRp)(R+ (1 - a)Rp) < 2MH(2i? + Rp)

That is, the first term in the denominator of the left side of Eq. 4.12-4 is negligible compared to
the second term. Equation 4.12-4 can be simplified to

_ Rp(2a —1)15
2R *m

aRp 1- a)Rp

bIGURE 4.12-3 The redrawn circuit showing the mode V.
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Next, using Eq. 4.12-3,

It is time to pick values for R and Rp. Let R —5 kH and Rp — 10 kft; then

-C w )
Refemng to Figure 4.12-2, the amplifier output is given by
Vo = bv> (4-12-5)

Comparing this equation to Eq. 4.12-1 gives

volt
< W )="° degree

or *=q](0.1)=2.4

The final circuit is shown in Figure 4.12-4.

Verify the Proposed Solution
As a check, suppose 9 = 150°. From Eq. 4.12-2, we see that

150" 1
a =360° + 2 = 0-9167
Using Eq. 4.12-4, we calculate

2Mn(10kn<2 x 0.9167- 1))15
15kO - 0.9167 x 10kft)15kft - 1- 0.9167)10kft) + 2 Mft(2 x 5kft + 10 kft

Finally, Eq. 4.12-5 indicates that the meter voltage will be
vOXx 2.4 -6.24= 14.98
This voltage will be interpreted to mean that the angle was
0= 10 vO= 149.8°
which is correct to three significant digits.

6.:4

+15v

FIGURE 4.12-4 The final designed circuit.
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413 SUMMARY

O The node voltage method of circuit analysis identifies the
nodes of a circuit where two or more elements are connected.
When the circuit consists of only resistors and current
sources, the following procedure is used to obtain the
node equations.

1. We choose one node as to the reference node. Label the
node voltages at the other nodes.

2. Express element currents as functions of the node volt-
ages. Figure 4.13-la illustrates the relationship between
the current in a resistor and the voltages at the nodes of the
resistor.

3. Apply KCL at all nodes except for the reference node.
Solution of the simultaneous equations results in knowl-
edge ofthe node voltages. All the voltages and currents in
the circuit can be determined when the node voltages are
known.

When a circuit has voltage sources as well as current sources,
we can still use the node voltage method by using the concept
ofa supemode. A supemode is a large node that includes two
nodes connected by a known voltage source. If the voltage
source is directly connected between a node g and the
reference node, we may set vq = vs and write the KCL
equations at the remaining nodes.

If the circuit contains a dependent source, we first express the

controlling voltage or current of the dependent source as a

function ofthe node voltages. Next, we express the controlled

voltage or current as a function of the node voltages. Finally,
we apply KCL to nodes and supemodes.

Mesh current analysis is accomplished by applying KVL to

the meshes of a planar circuit. When the circuit consists of

only resistors and voltage sources, the following procedure
is used to obtain the mesh equations.

va~
-1
P V A e c
;2411 ++ (va- vb) ol *3
> r2< >va yb<
(@)

1 Label the mesh currents.

2. Express element voltages as functions of the mesh
currents. Figure 4.13-1b illustrates the relationship be-
tween the voltage across a resistor and the currents of the
meshes that include the resistor.

3. Apply KVL to all meshes.

Solution of the simultaneous equations results in knowl-
edge ofthe mesh currents. All the voltages and currents in
the circuit can be determined when the mesh currents are
known.

If a current source is common to two adjoining meshes, we
define the interior of the two meshes as a supermesh. We
then write the mesh current equation around the periphery of
the supermesh. Ifa current source appears at the periphery of
only one mesh, we may define that mesh current as equal to
the current of the source, accounting for the direction of the
current source.

Ifthe circuit contains a dependent source, we first express the

controlling voltage or current of the dependent source as a

function ofthe mesh currents. Next, we express the controlled

voltage or current as a function of the mesh currents. Finally,
we apply KVL to meshes and supermeshes.

In general, either node voltage or mesh current analysis can

be used to obtain the currents or voltages in a circuit.

However, a circuit with fewer node equations than mesh

current equations may require that we select the node

voltage method. Conversely, mesh current analysis is read-
ily applicable for a circuit with fewer mesh current equations
than node voltage equations.

MATLAB greatly reduces the drudgery of solving node or

mesh equations.

(b)

f IGL RE 4.13-1 Expressing resistor currents and voltages in terms of (a) node voltage or (b) mesh currents.



PROBLEMS

Section 4.2 Node Voltage Analysis of Circuits with
Current Sources

P 4.2-1 The node voltages in the circuit of Figure P 4.2-1 are
M= -4V and w2 = 2V. Determine z the current of the

current source.
Answer: i= 15A

Figure P 4.2-1

P 4.2-2 Determine the node voltages for the circuit of Figure
P 4.2-2.

Answer: vi = 2V. v2= 30V, and 8= 24V

v3

Figure P 4.2-2
P 4.2-3 The node voltages in the circuit of Figure P 4.2-3 are

vj=4V,w= 15V, and v3 = 18 V. Determine /j and j2, the
currents of the current sources.

Answer: /, = -2 A and i2= 2A

v3

Figure P 4.2-3

Problems — O

P 4.2-4 Consider the circuit shown in Figure P 4.2-4. Find
values of the resistances R] and R2 that cause the voltages vi
andv2tobe W= IVandv2= 2 V.

500 Q
-AAAr

3mAfp VA>RA 5mA

Figure P 4.2-4

P 4.2-5 Find the voltage v for the circuit shown in Figure
P 4.2-5.

Answer: v= 217 mV

P 4.2-6 Simplify the circuit shown in Figure P 4.2-6 by
replacing series and parallel resistors with equivalent resistors;
then analyze the simplified circuit by writing and solving node
equations, (a) Determine the power supplied by each current
source, (b) Determine the power received by the 12-0 resistor.

120 Q

Figure P 4.2-6
P 4.2-7 The node voltages in the circuit shown in Figure

P 4.2-7 are va= 7 V and vb = 10 V. Determine values of the
current source current, is, and the resistance, R.

Figure P 4.2-7
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Section 4.3 Node Voltage Analysis of Circuits
with Current and Voltage Sources

P 4.3-1 The voltmeter in Figure P 4.3-1 measures vc, the node
voltage at node c. Determine the value of vc.

Answer: vc= 2V

Figure P 4.3-1

P 4.3-2 The voltages va, b, vc, and vdin Figure P 4.3-2 are the
node voltages corresponding to nodes a, b, ¢, and d. The current i
is the current in a short circuit connected between nodes b and c.
Determine the values of va,  vc, and vd and of /.

Answer:va= —12V,\b=vc=4V,vd= 4V,/=2mA

Figure P 4.3-2

P 4.3-3 Determine the node voltage va for the circuit of
Figure P 4.3-3.

Answer: va—7V

Figure P 4.3-3

P 4.3-4 Determine
Figure P 4.3-4.

Answer: va= 4V

the node voltage va for the circuit of

8V

Figure P 4.3-4

P 4.3-5 The voltages va, vb, and vc in Figure P 4.3-5 are the
node voltages corresponding to nodes a, b, and c. The values of
these voltages are:

va= 12V,vb=9.882V, and vc = 5294V

Determine the power supplied by the voltage source.

6Q

Figure P 4.3-5

P 4.3-6 The voltmeter in the circuit of Figure P 4.3-6
measures a node voltage. The value of that node voltage
depends on the value of the resistance R.

(a) Determine the value of the resistance R that will cause the
voltage measured by the voltmeter to be 4 V.

(b) Determine the voltage measured by the voltmeter when
R= 12kO = 12000.

Answers: (a) 6 kfl (b) 2V

P 4.3-7 Determine the values of the node voltages, \ and
V2, in Figure P 4.3-7. Determine the values of the currents /a
and ih.



Figure P 4.3-7

P 4.3-8 The circuit shown in Figure P 4.3-8 has two inputs, v,
and v2, and one output, vQ The output is related to the input by
the equation

vo = tfvi 4- bv2

where a and b are constants that depend on Ru R2 and R3.

(a) Determine the values of the coefficients a and b when
R\ = 10fis/22 —400, and R3=380.

(b) Determine the values of the coefficients a and b when
R\ = R2and R$ = R\11/2

Figure P 4.3-8

P 4.2-9 Determine the values of the node voltages of the
circuit shown in Figure P 4.3-9.

5V 20Q
r-o - VA—
80 2n
v\ — VW “AAN— 1M
(j 125A 400 1)15 V

Figure P4 3-9

P 4.3-10 Figure P 4.3-10 shows a measurement made in the

laboratory. Vour lab partner forgot to record the values of R,,
*2, and He thtnks that the two resistors were 10-kfl

resistors and the other was a 5-kfl resistor. Is this possible?
Which resistor is the 5-kn resistor?

Problems---—- (

Figure P 4.3-10

*P 4.3-11 Determine the values of the node voltages of the
circuit shown in Figure P 4.3-11.

3A

P 4.3-12 Determine the values of the node voltages of the
circuit shown in Figure P 4.3-12.

Figure P

Section 4.4 Node Voltage Analysis with Dependent
Sources
Daa1 tu u j

p* The V0'tageS V“.“V and V m F,gure P 4 4°1 are the
node vol|aees correspond.ng to nodes a, b, and c. The values of

t ™

6 voltages are:
v, = 8667V, w,= 2V. and wv= 10V
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. ) mAAV
Determine the value of A, the gain of the dependent source. 4a u
2n (2)
— VW— — "<D

6 2A12VO

Figure P 4.4-4

P 4.4-5 Determine the value of the current ix in the circuit of
Figure P 4.4-5.

Answer: L =24 A
Figure P 4.4-1

P 4.4-2 Find ib for the circuit shown in Figure P 4.4-2.
Answer: ib= —12 mA

1 kft 3 kQ

Figure P 4.4-5

P 4.4-6 Determine the power supplied by the 12-V voltage
source in Figure P 4.4-6.

Figure P 4.4-2

P 4.4-3 Determine the node voltage vb for the circuit of
Figure P 4.4-3.

Answer: vb= 15V
Figure P 4.4-6

P 4.4-7 Determine the value of the current ic in Figure
P 4.4-7.

Figure P 4.4-3

P 4.4-4 The circled numbers in Figure P 4.4-4 are node
numbers. The node voltages of this circuit are vi = 10V,
V2= 14V, and v3= 12 V.

(@) Determine the value of the current 2.

. A Figure P 4.4-7
(b) Determine the value of r, the gain of the CCVS.

P 4.4-8 Determine the value of the power supplied by the

Answers: (a) -2 A (b) 4 VIA dependent source in Figure P 4.4-8
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p 4.4-12 Determine values of the node voltages, Vj, v2, v3,
V4, and v5 in the circuit shown in Figure P 4.4-12.

Figure P 4.4-8

P 4.4-9 The node voltages in the circuit shown in Figure
P 4.4-9 are
Vf=4V,v=0V, andv3= —6V
Determine the values of the resistance, /?, and of the gain, b, of  pigure p 4.4-12

the CCCS. 10V
4.4-13 Determine values of the node voltages, vis v2, v3,

v4, and v5 in the circuit shown in Figure P 4.4-13.

Figure P 4.4-9

P 4.4-10 The value of the node voltage at node b in the circuit
shown in Figure P 4.4-10 is vb= 18 V.

(a) Determine the value of A, the gain of the dependent source.
(b) Determine the power supplied by the dependent source.

Figure P 4.4-13

P 4.4-14 Determine values of the node voltages, vj, v2, v3,
v4, and vs in the circuit shown in Figure P 4.4-14.

Figure P 4.4-10

*P 4.4-11 Determine the power supplied by the dependent
source in the circuit shown in Figure P 4.4-11.
Ol

4 A Figure P 4.4-14

P 4.4-15 The voltages v,, v2, v3, and v4 are the node voltages
corresponding to nodes 1, 2, 3, and 4 in Figure P 4.4-15.

Figure P 4.4-11 N
Determine the values of these node voltages.
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Figure P 4.4-15

P 4.4-16 The voltages vj, v2, v3 and v4 in Figure P 4.4-16 are
the node voltages corresponding to nodes 1, 2, 3, and 4. The
values of these voltages are

M=10V,v2=7V,v3=-15V, and v4 = 225V

Determine the values of the gains of the dependent sources, A
and 5, and of the resistance Rj.

P 4.4-17 The voltages vP?v2 and v3in Figure P 4.4-17 are the
node voltages corresponding to nodes 1, 2, and 3. The values
of these voltages are

Vi 12V,v2=21V, andv3 = -3V

(a) Determine the values of the resistances R} and R2.
(b) Determine the power supplied by each source.

1.25 A

<D

Figure P 4.4-17

P 4.4-18 The voltages vb v2, and v3in Figure P 4.4-18 are the
node voltages corresponding to nodes 1, 2, and 3. The values

of these voltages are
vj = 12V,vw2 =96V, andv3 = —133V

(@) Determine the valuesof the resistances R\ and R2.
(b) Determine the power supplied by each source.

8Q

Figure P 4.4-18

P 4.4-19 The voltages v2, v3, and v4 for the circuit shown in
Figure P 4.4-19 are:

v2= 16V,v3=8V,andM =6V
Determine the values of the following:

(@) The gain. A, of the VCVS

(b) The resistance R5

(c) The currents iband =

(d) The power received by resistor R4

v4

Figure P 4.4-19

P 4.4-20 Determine the values of the node voltages M and v2
for the circuit shown in Figure P 4.4-20.

3ui

4>

Figure P 4.4-20
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P 4.5-2 The values of the mesh currents in the circuit shown
in Figure P 45-2 are \ = 2A,2 = 3A, and 3 =4A. De-
termine the values of the resistance R and of the voltages vj
and v2 of the voltage sources.

Answers: R —12H,W = 4V, andv2 = —28V

P 4.4-21 The encircled numbers in Figure P 4.4-21 are node
numbers. Determine the values of vh v2, and V3, the node
voltages corresponding to nodes 1, 2, and 3.

P 4.4-22 Determine the values of the node voltages v,, v2,
and v3 for the circuit shown in Figure P 4.4-22.

Figure P 4.5-2

» A P 4.5-3 The currents i\ and i2 in Figure P 4.5-3 are the mesh
currents. Determine the value of the resistance R required to

cause va= —6 V.
Answer: R =4H

P 4.4-23 Determine the values of the node voltages vb v2, VW
and v3 for the circuit shown in Figure P 4.4-23.

18 Vv

Figure P 4.5-3

P 4.5-4 Determine the mesh currents iaand ib in the circuit
Figure P 4.4-23 shown in Figure P 4.5-4,

Section 4.5 Mesh Current Analysis with

Independent Voltage Sources 75 Q 100 Q

P 4.5-1 Determine the mesh currents, iu i2 and i3 for the
circuit shown in Figure P 4.5-1.

Answers: i, = 3A,i2= 2A. andiz=4A

15V 21V Figure P 45-4

P 4.5-5 Find the current i for the circuit of Figure P 4.5-5.

Figure P 4.5-1 Hint: A short circuit can be treated as a 0-V voltage source.
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P 4.6-3 Find V2 for the circuit shown in Figure P 4.6-3.
Answer: v2= 2V

+ V2 ~ 60 ft
V1V e ——— f-W V
05 A 20 ft 1110w L
Figure P 4.5-5
30af G ? G y C v r n

P 4.5-6 Simplify the circuit shown in Figure P 4.5-6 by
replacing series and parallel resistors by equivalent resistors. Figure P 4.6-3

Next, analyze the simplified circuit by writing and solving

mesh equations. P 4.6-4 Find vc for the circuit show™ in Figure P 4.6-4.
(a) Determine the power supplied by each source,

(b) Determine the power absorbed by the 30-0 resistor.

P 4.6-5 Determine the value of the voltage measured by the
voltmeter in Figure P 4.6-5.

Section 4.6 Mesh Current Analysis with Current Answer: 8 V
and Voltage Sources
P 4.6-1 Find 2 for the circuit shown in Figure P 4.6-1.
Answer: = 0.6 A
0.5A0 10V
50 ft 25 ft
Figure P 4.6-1 P 4.6-6 Determine the value of the current measured by the

ammeter in Figure P 4.6-6.

P 4.6-2 Find vc for the circuit shown in Figure P 4.6-2.
. Hint: Write and solve a single mesh equation.
Answer: vc —15V

75ft 100ft

P 4.6-7 The currents ilt 2 and 23 in Figure P 4.6-7 are the
Figure P 4.6-2 mesh currents. Determine the value of the resistance R.
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Figure P 4.6-7

P 4.6-8 Determine values of the mesh currents, ij, i2and z3 in
the circuit shown in Figure P 4.6-8.

Figure P 4.6-8

P 4.6-9 The circuit shown in Figure P 4.6-9 has three inputs:
2%, iy, and vz. The output of the circuit is jO. The output is related
to the inputs by

io=aix+ biy+cwz

where a, b, and ¢ are constants. Determine the values of a, b,
and c.

6n«

Figure P 4.6-9

P 4.6-10 The mesh currents in the circuit shown in Figure
P 4.6-10 are

it = -2.2213 A, i2= 0.7787 A, and/3 = 0.0770 A

(a) Determine the values of the resistances /?, and R3.

(b) Determine the value of the pow'er supplied by the current
source.

Problems-——-- (

*1

P 4.6-11 Determine the value of the voltage measured by the
voltmeter in Figure P 4.6-11.

Hint: Apply KVL to a supermesh to determine the current in
the 2-H resistor.

Answer: 4/3 V

P 4.6-12 Determine the value of the current measured by the
ammeter in Figure P 4.6-12.

Hint: Apply KVL to a supermesh.
Answer: —0.333 A

P 4.6-13 The values of the mesh currents in the circuit shown
in Figure P 4.6-13 are

fi=02A=07A andiz = 08A
Determine the values of the following:

(a) The power supplied by each voltage source
(b) The resistance R

(c) The current source current

(d) The voltage vs across the current source
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Figure P 4.6-13

Section 4.7 Mesh Current Analysis with
Dependent Sources

P 4.7-1 Find v2 for the circuit shown in Figure P 4.7-1.
Answer: v2= 10V

0.0AV?

Figure P 4.7-1

P 4.7-2 Determine the mesh current iafor the circuit shown in
Figure P 4.7-2.

Answer: ia= —48 mA

200 0
AAAr

4/h

Figure P 4.7-2

P 4.7-3 Find vGfor the circuit shown in Figure P 4.7-3.
Answer: vG= 2.5V

60 250 Q

Figure p 4.7-3

P 4.7-4 Determine the mesh current jafor the circuit shown in
Figure P 4.7-4.

Answer: iA= —24 mA

3>h

Figure P 4.7-4

P 4.7-5 Although scientists continue to debate exactly why
and how it works, the process of using electricity to aid in the
repair and growth of bones—which has been used mainly with
fractures—may soon be extended to an array of other prob-
lems, ranging from osteoporosis and osteoarthritis to spinal
fusions and skin ulcers.

An electric current is applied to bone fractures that have
not healed in the normal period of time. The process seeks to
imitate natural electrical forces within the body. It takes only a
small amount of electric stimulation to accelerate bone recov-
ery. The direct current method uses an electrode that is
implanted at the bone. This method has a success rate ap-
proaching 80 percent.

The implant is shown in Figure P 4.7-5<z, and the circuit
model is shown in Figure P 4.7-56. Find the energy delivered
to the cathode during a 24-hour period. The cathode is repre-
sented by the dependent voltage source and the 2100-kfl
resistor.

Cathode

Micro Connector

10 kQ
AAAr

100 kQ

(b)
Figure P 4.7-5 (a) Electric aid to bone repair. (b) Circuit model.

P 4.7-6 The model of a bipolar junction transistor (BJT)
amplifier is shown in Figure P 4.7-6.

(a) Determine the gain vO/vj.
(b) Calculate the required value ofg to obtain a gain V@Qv, =
-170 when RL=5k Ci,R] = 1000, andR2= 1kO.
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Figure P 4.7-6

P 4.7-7 The currents iU 2, and 23, are the mesh currents of the
circuit shown in Figure P 4.7-7. Determine the values of/,, i2,
and /3.

Figure P 4.7-7

P 4.7-8 Determine the value of the power supplied by the
dependent source in Figure P 4.7-8.

Figure P 4.7-8

P 4.7-9 Determine the value of the resistance R in the circuit
shown in Figure P 4.7-9.

5 kfl 10 kQ

25\C1) - Al >4ih /7> |0.5mA

Figure P 4.7-9

P 4.7-10 The circuit shown in Figure P 4.7-10 is the small signal
model of an amplifier. The input to the amplifier is the voltage
source voltage, VA The output of the amplifier is the voltage vc.

(a) The ratio of the output to the input, v@ vs, is called the gain
of the amplifier. Determine the gain of the amplifier.

(b) The ratio of the current of the input source to the input
voltage, age /blvs, is called the input resistance of the
amplifier. Determine the input resistance.

Problems - ©

i ka

Figure P 4.7-10

P 4.7-11 Determine values of the mesh currents if, i1, i2, i3,
and i4 in the circuit shown in Figure P 4.7-11.

P 4.7-12 Determine the values of the mesh currents of the
circuit shown in Figure P 4.7-12.

b

Figure P 4.7-12

P 4.7-13 The currents iu i2, and i3 are the mesh currents
corresponding to meshes 1, 2, and 3 in Figure P 4.7-13.
Determine the values of these mesh currents.

5u,
30Q

-AIW

20n

25V 2A

Figure P 4.7-13
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P 4.7-14 The currents iu i2, and i3 are the mesh currents
corresponding to meshes 1, 2, and 3 in Figure P 4.7-14. The
values of these currents are

jy=-1375A k= -25 Aand i3= -3 25A

Determine the values of the gains of the dependent sources, A
and B.

Figure P 4.7-14

P 4.7-15 Determine the current i in the circuit shown in
Figure P 4.7-15.

Answer: i= 3 A 4 q

—VW—

12 A(T) 281t >8ft

Figure P 4.7-15

P 4.7-16 Determine the values of the mesh currents i\ and i2
for the circuit shown in Figure P 4.7-16

Figure P 4.7-16

P 4.7-17 Determine the values of the mesh currents i\ and i2
for the circuit shown in Figure P 4.7-17

Figure P 4.7-17

Section 4.8 The Node Voltage Method and Mesh
Current Method Compared

P 4.8-1 The circuit shown in Figure P 4.8-1has two inputs,
the voltage source voltages, M and v2. The circuit has one
output, the dependent source voltage, vG Design this circuit so
that the output is related to the inputs by

vD= 2vj + 0.5v2
Hint: Determine the required values of A, R\, R2, R3 and R4.

P 4.8-2 The circuit shown in Figure P 4.8-2 has two inputs, vs
and isand one output vG The output is related to the inputs by
the equation

VO = ais+ bvs

where a and b are constants to be determined. Determine the
values a and b by (a) writing and solving mesh equations and
(b) writing and solving node equations.

Figure P 4.8-2

P 4.8-3 Determine the power supplied by the dependent
source in the circuit shown in Figure P 4.8-3 by writing
and solving (a) node equations and (b) mesh equations.

L=0.2v9
+ va
— VW vVw —
50 ft 10ft
_e -
120 vV

Figure P 4.8-3
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P 4.11-1 Computer analysis of the circuit shown in Figure
P 4.11-1 indicates that the node voltages are va= 52V,
\b—_4 8v, andvc = 3.0V. Is this analysis correct?

Hint: Use the node voltages to calculate all the element
currents. Check to see that KCL is satisfied at each node.
0V

Figure P 4.11-1

P 4.11-2 An old lab report asserts that the node voltages of
the circuit of Figure P 4.11-2 are va= 4V,~ = 20V.
andwvc = 12'V. Are these correct?

b

Figure P 4.11-2

P 4.11-3 Your lab partner forgot to record the values of/?!,

and R3. He thinks that two of the resistors in Figure
P 4.11 -3 had values of 10 kH and that the other had a value of
5 kH. Is this possible? Which resistor is the 5-kf) resistor?

Figure P 4.11-3

Problems — ( 159

P 4.11-4 Computer analysis of the circuit shown in Figure
P 4.11-4 indicates that the node voltages are vj = —8 V, \& =
—20V, and \8 = -6 V. Verify that this analysis is correct.

Hint: Use the node voltages to calculate the element currents.
Verify' that KCL is satisfied at each node.

Figure P 4.11-4

P 4.11-5 Computer analysis of the circuit shown in Figure
P 4.11-5 indicates that the mesh currents are i\ = 2A.i2=
4 A, and 13 = 3 A. Verify that this analysis is correct.

Hint: Use the mesh currents to calculate the element voltages.
Verify that KVL is satisfied for each mesh.

120Q
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PSpice Problems

SP 4-1 Use PSpice to determine the node voltages of the
circuit shown in Figure SP 4-1.

Figure SP 4-1

SP 4-2 Use PSpice to determine the mesh currents of the
circuit shown in Figure SP 4-2.

Figure SP 4-2

Design Problems

DP 4-1 An electronic instrument incorporates a 15-V power
supply. A digital display is added that requires a 5-V power
supply. Unfortunately, the project is over budget, and you are
instructed to use the existing power supply. Using a voltage
divider, as shown in Figure DP 4-1, you are able to obtain 5V. The
specification sheet for the digital display shows that the display
will operate properly over a supply voltage range of 4.8 V to
5.4 V. Furthermore, the display will draw 300 mA (/) when the
display is active and 100 mA when quiescent (no activity).

(a) Select values of R }and R2so that the display will be supplied
with 4.8 V to 5.4 V under all conditions of current /.

(b) Calculate the maximum power dissipated by each resistor, R\
and R2<and the maximum current drawn from the 15-V supply.

(c) Is the use of the voltage divider a good engineering solu-
tion? If not, why? What problems might arise?

SP 4-3 The voltages va, vb, vc, and vd in Figure SP 4-3 are the
node voltages corresponding to nodes a, b, c and d. The current
[ is the current in a short circuit connected between nodes b
and c. Use PSpice to determine the values of va, vb, vc, and vd
and of /.

Figure SP 4-3

SP 4-4 Determine the current, /, shown in Figure SP 4-4.

Answer: i =0.56 A
2Q

Figure SP 4-4

Figure DP 4-1

DP 4-2 For the circuit shown in Figure DP 4-2, it is desired to
set the voltage at node a equal to 0 V control an electric motor.
Select voltages i’i and v2to achieve va= 0 V when v{and v2are
less than 20 V and greater than zero and R = 2 11



Figure DP 4-2

DP 4-3 A wiring circuit for a special lamp in a home is shown
in Figure DP 4-3. The lamp has a resistance of 2 O, and the
designer selects R = 100H. The lamp will light when / >
50 mA but will bum out when | > 75 mA.

(a) Determine the current in the lamp and whether it will light
for R = 1000.

(b) Select R so that the lamp will light but will not bum out if R
changes by +10 percent because of temperature changes in
the home.

50 Q R

Figure DP 4-3 A lamp circuit.

Design Problems-—-( 161

D P 4-4 To control a device using the circuit shown in Figure
DP 4-4, it is necessary that vab= 10 V. Select the resistors when
it is required that all resistors be greater than 1 fi and
r3+ R4= 20a.

10 Q rs3 a

DP 4-5 The current i shown in the circuit of Figure DP 4-5 is
used to measure the stress between two sides of an earth fault
line. Voltage V] is obtained from one side of the fault, and v2is
obtained from the other side of the fault. Select the resistances
Ri, R2, and R3 so that the magnitude of the current i will
remain in the range between 0.5 mA and 2 mA when M and
v2 may each vary independently between +1 V and -12 V
QlV<y,<2V).

Figure DP 4-5 A circuit for earth fault-line stress measurement.
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51 INTRODUCTION

In this chapter, we consider five circuit theorems:

A source transformation allows us to replace a voltage source and series resistor by a current
source and parallel resistor. Doing so does not change the element current or voltage of any other
element of the circuit.

e Superposition says that the response of a linear circuit to several inputs working together is
equal to the sum of the responses to each of the inputs working separately.

» Thevenin’s theorem allows us to replace part of a circuit by a voltage source and series resistor.
Doing so does not change the element current or voltage of any other element of the circuit.

* Norton’s theorem allows us to replace part of a circuit by a current source and parallel resistor.
Doing so does not change the element current or voltage of any other element of the circuit.

» The maximum power transfer theorem describes the condition under which one circuit transfers
as much power as possible to another circuit.

Each of these circuit theorems can be thought of as a shortcut, a way to reduce the complexity of an
electric circuit so that it can be analyzed more easily. More important, these theorems provide insight
into the nature of linear electric circuits.

52 SOURCE TRANSFORMATIONS

The ideal voltage source is the simplest model of a voltage source, but occasionally we need a
more accurate model. Figure 5.2-1a shows a more accurate but more complicated model of a
voltage source. The circuit shown in Figure 5.2-1 is sometimes called a nonideal voltage source.

voltage of a practical voltage source decreases as the voltage source supplies more power.
The nonideal voltage source models this behavior, whereas the ideal voltage source does not. The
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(b)

FIGURE 5.2-1 (a) A nonideal
voltage source. (£) A nonideal
current source, (c) Circuit B
connected to the nonideal voltage
source, (d) Circuit B connected to
the nonideal current source.

nonideal voltage source is a more accurate model of a practical voltage source than the ideal
voltage source, but it is also more complicated. We will usually use ideal voltage sources to model
practical voltage sources but will occasionally need to use a nonideal voltage source.) Figure 5.2-
\b shows a nonideal current source. It is a more accurate but more complicated model of a practical
current source.

Under certain conditions (Rp= Rsand vs = Rsis), the nonideal voltage source and the nonideal
current source are equivalent to each other. Figure 5.2-1 illustrates the meaning of “equivalent/' In
Figure 5.2-Ic, a nonideal voltage source is connected to circuit B. In Figure 5.2-\d, a nonideal
current source is connected to that same circuit B. Perhaps Figure 5.2-1d was obtained from Figure
5.2-Ic, by replacing the nonideal voltage source with a nonideal current source. Replacing the
nonideal voltage source by the equivalent nonideal current source does not change the voltage or
current of any element in circuit B. That means that if you looked at a list of the values of the
currents and voltages of all the circuit elements in circuit B, you could not tell whether circuit B was
connected to a nonideal voltage source or to an equivalent nonideal current source. Similarly, we
can imagine that Figure 5.2-1c was obtained from Figure 5.2-1d by replacing the nonideal current
source with a nonideal voltage source. Replacing the nonideal current source by the equivalent
nonideal voltage source does not change the voltage or current of any element in circuit B. The
process of transforming Figure 5.2-Ic into Figure 5.2-1d, or vice versa, is called a source
transformation.

We want the circuit of Figure 5.2-1a to transform into that of Figure 5.2-1b. We then require that both
circuits have the same characteristic for all values of an external resistor R connected between terminals a-b
(Figures 52-laJj). We will try the two extreme values R = 0 and R = oc.

When the external resistance R = 0, we have a short circuit across terminals a-b. First, we

require the short-circuit current to be the same for each circuit. The short-circuit current for Figure
5.2-2a is

(5.2-1)

« o -s(t

FIGURE 5.2-2 (a) Voltage source with an
external resistor R. (/>) Current source with
@ an external resistance R.



Circuit Theorems

The short-circuit current for Figure 5.2-2/) is i — /s. Therefore, we require that

For the open-circuit condition, R is infinite, and from Figure 5.2-2a, we have the voltage v = vs.
For the open-circuit voltage of Figure 5.2-2b, we have

v = hRP
Because v must be equal for both circuits to be equivalent, we require that
vs = isRp (5.2-3)

Also, from Eq. 5.2-2, we require is = vs/Rs. Therefore, we must have

and, therefore, we require that
Rs=Rp (5.2-4)

Equations 5.2-2 and 5.2-4 must be true simultaneously for the two nonideal sources to be equivalent.
Of course, we have proved that the two sources are equivalent at two values (R = 0 and R = oc). We
have not proved that the circuits are equal for all R, but we assert that the equality relationship holds for
all R for these two circuits as we show below.

For the circuit of Figure 5.2-2a, we use KVL to obtain

vs = iRs+ v

Dividing by Rs gives

If we use KCL for the circuit of Figure 5.2-2b, we have

Vv

Thus, the two circuits are equivalent when is = vs/Rsand Rs = Rp.

A voltage source vsconnected in series with a resistor Rsand a current source isconnected in
parallel with a resistor Rp are equivalent circuits provided that

Rp=Rs and vs= Rsis

Replacing a voltage source in series with a resistor by its equivalent circuit will not change the element
currents or voltages in the rest of the circuit. Similarly, replacing a current source in parallel with a
resistor by its equivalent circuit will not change the element currents or voltages in the rest of the
circuit.

Source transformations are useful for circuit simplification and may also be useful in node or
mesh analysis. The method of transforming one form of source into the other form is summarized in
Figure 5.2-3.



Source Transform ations — 0

Method
Set ‘'s=
=>

FIGURE 5.2-3 Method of

Norton Thevenin ~~  source transformations.

Example 5.2-1 Source Transformations

Find the source transformation for the circuits shown in Figures 5.2-4a,b.

14 n

m=> 's(f 2ACD <12£1 [=£>

FIGURE 5.2-4 The

(a) (b) circuits of e xam p1e 5.2-1.

Solution
Using the method summarized in Figure 5.2-3, we note that the voltage source of Figure 5.2-4a can be
transformed to a current source with Rp = Rs = 14ft. The current source is
ys 28
'=R,= U = 2A
The resulting transformed source is shown on the right side of Figure 5.2-4a.
Starting with the current source of Figure 5.2-46, we have Rs = Rp = 12 Cl. The voltage source is
vs= ig?%p= 2(12) = 24V
The resulting transformed source is shown on the right side of Figure 5.2-46. Note that the positive sign of the
voltage source vs appears on the lower terminal because the current source arrow points downward.

Example 5.2-2 Source Transformations

A circuit is shown in Figure 5.2-5. Find the current i by reducing the
circuit to the right of terminals a-b to its simplest form, using source
transformations.

FIGURE 5.2-5 The circuit of Example 5.2-2.
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Solution
The first step is to transform the 30-0 series resistor and the 3-V source to a current source with a parallel
resistance. First, we note that Rp = = 30 ft. The current source is

*e=xf =571 01A

as shown in Figure 5.2-6a. Combining the two parallel resistances in Figure 5.2-6a, we have Rp2 = 12 ft, as shown
in Figure 5.2-6b.

The parallel resistance of 12 ft and the current source of 0.1 A can be transformed to a voltage source in
series with R& = 12 fl, as shown in Figure 5.2-6¢c. The voltage source vs is found using Eq. 5.2-3:

vs= isR& = 0.1(12) = 1.2 Vv

Source transformations do not disturb the currents and voltages in the rest of the circuit. Therefore, the
current i in Figure 5.2-5 is equal to the current i in Figure 5.2-6¢. The current i is found by using KVL around the
loop of Figure 5.2-6¢, yielding i = 3.8/17 = 0.224 A.

1A

(b)

FIGURE 5.2-6

Source transformation
steps for Example 5.2-2.

EXERCISES.2-1 Determine values of R and is so that the circuits shown in Figures E 5.2-1a,b

are equivalent to each other due to a source transformation.
Answer: R = 10ftandis= 12 A

EXERCISE 5.2-2 Determine values of R and isso that the circuits shown in Figures E 5.2-2a,b

are equivalent to each other due to a source transformation.

Hint: Notice that the polarity of the voltage source in Figure E 5.2-2a is not the same as in Figure

E 5.2-1a.

Answer: R = 10Cland 5= —l.2 A
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EXERCISE 5.2-3 Determine values of R and vs so that the circuits shown in Figures E 5.2-3a,
b are equivalent to each other due to a source transformation.

8Q

(@) (b) FIGURE E 5.2-3

Answer: R=8Hand vs= 24V

EXERCISE 5.2-4 Determine values of R and vsso that the circuits shown in Figures E 5.2-4a,
b are equivalent to each other due to a source transformation.

8Q

@) (b) FIGURE E 5.2-4
Hint: Notice that the reference direction of the current source in Figure E 5.2-4b is not the same as
in Figure E 5.2-3h.
Answer: R = 8fl and vs= —24 V

53 SUPERPOSITION

The output of a linear circuit can be expressed as a linear combination of its inputs. For example,
consider any circuit having the following three properties:

1 The circuit consists entirely of resistors and dependent and independent sources.

2. The circuit inputs are the voltages of all the independent voltage sources and the currents of all
the independent current sources.

3. The output is the voltage or current of any element of the circuit.

Such a circuit is a linear circuit. Consequently, the circuit output can be expressedas a linear
combination of the circuit input. For example,

V0 = a\W\ + a2\2 H------ hflnwn (5.3-1)

where V0is the output of the circuit (it could be a current instead of a voltage) and vj,v2____ vnare the
inputs to the circuit (any or all the inputs could be currents instead of voltages). The coefficients
01,02,... <n of the linear combination are real constants called gains.

Next, consider what would happen if we set all but one input to zero.Let vQdenote output when
all inputs except the rth input have been set to zero. For example, suppose we set v2, V3....... vnto zero.
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Then
voi —ct\W (5.3-2)

We can interpret v0i = a\V\ as the circuit output due to input v\acting separately. In contrast, the vo in
Eq 5.3-1 is the circuit output due to all the inputs working together. We now have the following
important interpretation of Eq. 5.3-1:

The output ofa linear circuit due to several inputs working together is equal to the sum ofthe
outputs due to each input working separately.

The inputs to our circuit are voltages of independent voltage sources and the currents of
independent current sources. When we set all but one input to zero the other inputs become 0-V
voltage sources and 0-A current sources. Because 0-V voltage sources are equivalent to short
circuits and 0-A current sources are equivalent to open circuits, we replace the sources
corresponding to the other inputs by short or open circuits.

Equation 5.3-2 suggests a method for determining the values of the coefficients a\, ..., anof
the linear combination. For example, to determine a\, set \2,\3, ..., vnto zero. Then, dividing both

sides of Eq. 5.5-2 by vj, we get

Vi

The other gains are determined similarly.

Example 5.3-1 Superposition

The circuit shown in Figure 5.3-1 has one output, v0, and three inputs, vj, ij, and \3. (As expected, the inputs are
voltages of independent voltage sources and the currents of independent current sources.) Express the output as a
linear combination of the inputs.

Solution

Let’s analyze the circuit using node equations. Label the node voltage at the top node of the current source and
identify the supemode corresponding to the horizontal voltage source as shown in Figure 5.3-2.
Apply KCL to the supemode to get

vi - (v3+ Vv0)
40 +h =P
Multiply both sides of this equation by 40 to eliminate the fractions. Then we have
vi - (v3+ vo) +40/2 = 4v0 =» vj + 40/2- v3 = 5v0

FIGURE 5.3-1 The linear circuit for Example 5.3-1. FIGURE 5.3-2 A supernode.
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Dividing both sides by 5 expresses the output as a linear combination of the inputs:
v, = Yo 998
L=y ¥ 82-y

Also, the coefficients of the linear combination can now be determined to be

a, = — =-V/V,a2= — = 8V/A.anda3= — = -"V/V
5 2 v3 5

Alternate Solution
Figure 5.3-3 shows the circuit from Figure 5.3-1 when i2—0 A and v3= 0V. (A zero current source is equivalent

to an open circuit, and a zero voltage source is equivalent to a short circuit.)

Zero Voltage Score

Zero Current Source FIGURE 5.3-3 Output due to the first input.

Using voltage division
10 1
Vo0,=40TTOV ,=5M

In other words,
fli= — =-vlv
Vi 5

Next, Figure 5.3-4 shows the circuit when = 0V and v3= 0 V. The resistors are connected in parallel. Applying

Ohm's law to the equivalent resistance gives

40 x 10h _
W2 40+100 7 8/2

In other words,

a2=— = 8V/IA

Finally, Figure 5.3-5 shows the circuit when vj = 0 V and i2 = 0 A. Using voltage division,

10 / x 1
V3 = 40~+~10 = —Vv3

Zero \Voltage Score
Zero Voltage
40 Q Score 40 Q
— VA 1 — VA —-- f-
20, .
\ J +
Ancther Zero Voltage Source mZero Current Source

FIGURE 5.3-4 Output due to the second inpuit. FIGURE 5.3-5 Output due to the third input.
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In other words.

a3 =¥ = __\JVor
V3 5

Now the output can be expressed as a linear combination of the inputs

vo = a\V1-f d2I2 4- 03v3 —7 v1-f 8/2 4- % (5 ||v3

before.

Example 5.3-2

Find the current / for the circuit of Figure 5.3-6a.

3/

(b) ©

FIGURE 5.3-6 (a) The circuit for Example 5.3-2. (b) The independent voltage source acting alone, (c) The independent current
source acting alone.

Solution
Independent sources provide the inputs to a circuit. The circuit in Figure 5.3-6a has two inputs: the voltage of the
independent voltage source and the current of the independent current source. The current, /, caused by the two
sources acting together is equal to the sum of the currents caused by each independent source acting separately.
Step 1: Figure 5.3-6b shows the circuit used to calculate the current caused by the independent voltage
source acting alone. The current source current is set to zero for this calculation. (A zero current source is
equivalent to an open circuit, so the current source has been replaced by an open circuit.) The current due to the
voltage source alone has been labeled as i\ in Figure 5.3-6b.
Apply Kirchhoffs voltage law to the loop in Figure 5.3-6b to get

—24 m(3 2)ij =310 i| = 3A

(Notice that we did not set the dependent source to zero. The inputs to a circuit are provided by the independent
sources, not by the dependent sources. When we find the response to one input acting alone, we set the other inputs
to zero. Hence, we set the other independent sources to zero, but there is no reason to set the dependent source to
Zero.)
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Step 2: Figure 5.3-6c shows the circuit used to calculate the current caused by the current source acting
alone. The voltage of the independent voltage is set to zero for this calculation. (A zero voltage source is
equivalent to a short circuit, so the independent voltage source has been replaced by a short circuit.) The current
due to the voltage source alone has been labeled as < in Figure 5.3-6¢.

First, express the controlling current of the dependent source in terms of the node voltage, va, using Ohm’s

law:

Next, apply Kirchhoffs current law at node a to get

va — 3/2 —3*2 — 3/2 L 7
2+ 7= 200 > phT— = = AA

Step 3: The current, /, caused by the two independent sources acting together is equal to the sum of the
currents, i\ and /2, caused by each source acting separately:

54 THEVENIN'S THEOREM

In this section, we introduce the Thevenin equivalent circuit, based on a theorem developed
by M. L. Thevenin, a French engineer, who first published the principle in 1883. Thevenin,
who is credited with the theorem, probably based his work on earlier work by Hermann von
Helmholtz (see Figure 5.4-1).
Figure 5.4-2 illustrates the use of the Thevenin equivalent circuit. In Figure 5.4-2a, a
circuit is partitioned into two parts—circuit A and circuit B—that are connected at a single
pair of terminals. (This is the only connection between circuits A and B. In particular, if the
overall circuit contains a dependent source, then either both parts of that dependent source
must be in circuit A or both parts must be in circuit B.) In Figure 5.4-26, circuit A is replaced
by its Thevenin equivalent circuit, which consists of an ideal voltage source in series with a
resistor. Replacing circuit A by its Thevenin equivalent circuit does not change the voltage  FIGIIRE 54-1 Hermann
or current of any element in circuit B. This means that if you looked at a list of the values of  von Helmholtz (1821-
the currents and voltages of all the circuit elements in circuit B, you could not tell whether ~ 1894), who is often
circuit B was connected to circuit A or connected to its Thevenin equivalent circuit. credited with the basic
Finding the Thevenin equivalent circuit of circuit A involves three parameters: the Work leading to
open-circuit voltage, v, the short-circuit current, /sc, and the Thevenin resistance, Rt. 1 nevenin’s theorem.
Figure 5.4-3 illustrates the meaning of these three parameters. In Figure 5.4-3a, an open Courtesy of the New York

; - Public Library.
circuit is connected across the terminals of circuit A. The voltage across that open circuit is Hblic Library
=) (b) (a) (b) (c)
FIGURE 5.4-2 (a) A circuit partitioned into two parts: circuit A FIGURE 5.4-3 The Thevenin equivalent circuit involves three
and circuit B. () Replacing circuit A by its Thevenin equivalent parameters: (a) the open-circuit voltage, voc, (b) the short-circuit

circuit. current, i8Z and (c) the Thevenin resistance, R{
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a a
—0
. 7 x
Circuit A* Circuit A*
o * n FIGURE 5.4-4 (a) The Thevenin resistance,
b b Ruand (b) a method for measuring or
) (b) calculating the Thevenin resistance, Rt.

the open-circuit voltage, voc. In Figure 5.4-36, a short circuit is connected across the terminals of
circuit A. The current in that short circuit is the short-circuit current, i”.

Figure 5.4-3c indicates that the Thevenin resistance, Rx is the equivalent resistance of circuit A*.
Circuit A* is formed from circuit A by replacing all the independent voltage sources by short circuits
and replacing all the independent current sources by open circuits. (Dependent current and voltage
sources are not replaced with open circuits or short circuits.) Frequently, the Thevenin resistance, Ru
can be determined by repeatedly replacing series or parallel resistors by equivalent resistors.
Sometimes, a more formal method is required. Figure 5.4-4 illustrates a formal method for
determining the value of the Thevenin resistance. A current source having current it is connected
across the terminals of circuit A*. The voltage, vt, across the current source is calculated or measured.
The Thevenin resistance is determined from the values of it and vt, using

The open-circuit voltage, v*., the short-circuit current, and the Thevenin resistance, Rt,
are related by the equation

voc ~ Rthc

Consequently, the Thevenin resistance can be calculated from the open-circuit voltage and the short-
circuit current.

In summary, the Thevenin equivalent circuit for circuit A consists of an ideal voltage source,
having voltage voc, in series with a resistor, having resistance Rx Replacing circuit A by its Thevenin
equivalent circuit does not change the voltage or current of any element in circuit B.

Example 5.4-1 Thevenin Equivalent Circuit

Using Thevenin’s theorem, find the current i through the resistor R

in the circuit of Figure 5.4-5.

Solution

Because we are interested in the current z we identify the resistor
R as circuit B. Then circuit A is as shown in Figure 5A-6a. The
Thevenin resistance Rxis found from Figure 5.4-6/?, where we have
set the voltage source voltage to zero and then replaced the 0-V

51 4t /
Fe-- WV F----WV—— 0 - -

50 V 20 Q

FIGURE 5.4-5 Circuit for Example 5.4-1.

source by a short circuit. We calculate the equivalent resistance looking into the terminals, obtaining Rx= 8 fl.
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R>=8Q
JWV-

)y =40 V Vv FIGURE 5.4-6 Steps for determining the
Thevenin equivalent circuit for the circuit
©) left of the terminals of Figure 5.4-5.
Using the voltage divider principle with the circuit of Figure 5.4-6a, we find —40 V.
Reconnecting circuit B to the Thevenin equivalent circuit as shown in Figure 5.4-6d, we obtain

L0
TP+ 8

Exampte 5.4-2 Thevenin Equivalent Circuit

Find the Thevenin equivalent circuit for the circuit shown in Figure 5.4-7.
12Q
10 Q 40

FIGURE 5.4-9 Thevenin
FIGURE 5.4-8 Circuit of Figure 5.4-7 with all the  equivalent circuit for the
FIGURE 5.4-7 Circuit for Example 5.4-2. sources deactivated. circuit of Figure 5.4-7.

Solution

One approach is to find the open-circuit voltage and the circuit’s Thevenin equivalent resistance Rx First, let us
find the resistance Rt. Figure 5.4-8 shows the circuit after replacing the voltage source by a short circuit and
replacing the current source by an open circuit. Look into the circuit at terminals a-b to find Rt. The 10-0 resistor
in parallel with the 40-0 resistor results in an equivalent resistance of 8 O. Adding 8 O to 4 O in series, we obtain

Rt =120
Next, we wish to determine the open-circuit voltage at terminals a-b. Because no current flows through the

4-0 resistor, the open-circuit voltage is identical to the voltage across the 40-0 resistor, vc. Using the bottom node
as the reference, we write KCL at node ¢ of Figure 5.4-7 to obtain

ve- 10 wvc
10 40 =
Solving for vc yields
v= -8V

Therefore, the Thevenin equivalent circuit is as shown in Figure 5.4-9.
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Some circuits contain one or more dependent sources as well as independent sources.
The presence of the dependent source prevents us from directly obtaining Rt from simple
circuit reduction using the rules for parallel and series resistors.

A procedure for determining Rtis: (1) determine the open-circuit voltage v*, and (2)
determine the short-circuit current  when terminals a-b are connected by a short circuit, as
shown in Figure 5.4-10; then

FIGURE 5.4-10 R(_

Thevenin circuit with Isc

a short circuit at

This method is attractive because we already need the open-circuit voltage for the
Thevenin equivalent circuit. We can show that Rt= v /i* by writing the K\VVL equation for
the loop of Figure 5.4-10, obtaining

Mr Rtisc —=0

term inals a-b.

Clearly, Rt = /g

Example 5.4-3 Thevenin Equivalent Circuits and Dependent Sources

Find the Thevenin equivalent circuit for the circuit shown in 2/
. L 6Q . 10 Q a
Figure 5.4-11, which includes a dependent source. FNNY, <A]> — AAAD
Solution 20 v
First, we find the open-circuit voltage = vab. Writing KVL
around the mesh of Figure 5.4-11 (using / as the mesh current),
we obtain

FIGURE 5.4-11 CircuitofExample 5.4-3

“20 £ 6/ —2/ 46/ —0

6Q 10Q a

Therefore, AAA--—-—-
i=2A

Because no current is flowing through the 10-0 resistor, the
open-circuit voltage is identical to the voltage across the
resistor between terminals ¢ and b. Therefore,

FIGURE 5.4-12 Circuitof
voc = 6/ = 12V Figure 5.4-11 with output

term inals a-b short-circuited.

The next step is to determine the short-circuit current
for the circuit of Figure 5.4-12. Using the two mesh currents indicated, we have

—20 + 6i\ —2i+ 6%\ —ii) = 0

and 6(i2- *'i)+ 10/2=0
Substitute i = i\ —i2 and rearrange the two equations to obtain
10/f - 4/2= 20
and _6/,+ 18/2=0
Therefore, we find that i2 = = 120/136 A. The Thevenin resistance is

= 13.6a
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FIGURE 5.4-13 (a) Circuit under
test with laboratory source vsand
resistor R. (b) Circuit of (a) with
Thevenin equivalent circuit

(b) replacing the test circuit.

A laboratory procedure for determining the Thevenin equivalent of a black box circuit (see
Figure 5.4.13a) is to measure / and v for two or more values of vsand a fixed value of R. For the circuit
of Figure 5.4.13/?, we replace the test circuit with its Thevenin equivalent, obtaining

V= Voc+I/2t (S-4-1)

The procedure is to measure v and i for a fixed R and several values of vs. For example, letR = 100
and consider the two measurement results

(1) ys=49V:i

and (2) vs=T76V: i

0.5A, v= 44V
2A, v= 56V

Then we have two simultaneous equations (using Eq. 5.51):

44 = vaoo -f 0.5/7t
56 = Mgp-h2/7t

Solving these simultaneous equations, we get Rt = 8 fl and = 40 V, thus obtaining the Thevenin
equivalent of the black box circuit.

EXERCISE 5.4-1 Determine values of Rt and voc that cause the circuit shown in Figure
E 5.4-1/? to be the Thevenin equivalent circuit of the circuit in Figure E 5.4-la.

Answer: Rt=Sfl and Mc= 2V

@ (b) (@) (b)
FIGURE E 54-1 FIGURE E 5.4-2

EXERCISE 5.4-2 Determine values of R, and voc that cause the circuit shown in Figure
E 5.4-26 to be the Thevenin equivalent circuit of the circuit in Figure E 5.4-2a.

Answer: Rx= 3 ft and =-6V

55 NORTON S EQUIVALENT CIRCUIT

An American engineer, E. L. Norton at Bell Telephone Laboratories, proposed an equivalent circuit
for circuit A of Figure 5.4-2, using a current source and an equivalent resistance. The Norton
equivalent circuit is related to the Thevenin equivalent circuit by a source transformation. In other
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words, a source transformation converts a Thevenin equivalent circuit into a Norton equivalent circuit
or vice versa. Norton published his method in 1926, 43 years after Thevenin.

Norton s theorem may be stated as follows: Given any linear circuit, divide it into two circuits, A
and B. If either A or B contains a dependent source, its controlling variable must be in the same circuit.
Consider circuit A and determine its short-circuit current iK at its terminals. Then the equivalent circuit of
A is a current source ix in parallel with a resistance Rn, where Rn is the resistance looking into circuit A
with all its independent sources deactivated.

Norton's theorem requires that, for any circuit of resistance elements and
energy sources with an identified terminal pair, the circuit can be replaced by a
parallel combination of an ideal current source isc and a conductance Gn, where
iscis the short-circuit current at the two terminals and Gn s the ratio of the short-
circuit current to the open-circuit voltage at the terminal pair.

FI(j| RE 55-1 Norton therefore have the Norton circuit for circuit A as shown in Figure 5.5-1. Finding
equivalent circuit for a linear ~~ Theven|[n equivalent circuit of the circuit in Figure 5.5-1 shows that Rn= Rtand =

circuit A. . . . . . .
treut Rtisc. The Norton equivalent is simply the source transformation of the Thevenin
equivalent.

Example 5.5-1 Norton Equivalent Circuit

Find the Norton equivalent circuit for the circuit of Figure 5.5-2.

Solution
We can replace the voltage source by a short circuit and find Rnby circuit reduction. Replacing the voltage source
by a short circuit, we have a 6-kO resistor in parallel with (8 kfl + 4 kO) = 12 kH. Therefore,

*n=6T12 = 4ka

To determine /sc, we short-circuit the output terminals with the voltage source activated as shown in Figure
5.5-3. Writing KCL at node a, we have

15V
2kfl "¢

or iK = 1.25 mA

— 0

Thus, the Norton equivalent (Figure 5.5-1) has Rn = 4 kO and z=c = 1.25 mA.

4 kft equivalent
5.5-2 Circuit of Example 5.5-1. FIGURE 5.5-3 Short circuit connected to output terminals.
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Example 5.5-2 Norton Equivalent Circuit

Find the Norton equivalent circuit for the circuit of Figure 5.5-4.

FIGURE 5.5-5 Short circuit connected to terminals a-b of the
FIGURE 5.5-4 Circuit of Example 5.5-2. Resistances in ohms. circuit of Figure 5.5-4. Resistances in ohms.

Solution
First, determine the current /sc for the short-circuit condition shown in Figure 5.5-5. Writing KCL at a, we obtain

24
i 3+ % —0

Note that no current flows in the 12-0 resistor because it is in parallel with a short circuit. Also, because of the
short circuit, the 24-V source causes 24 V to appear across the 4-0 resistor. Therefore,

24
ISCZT+ 3=9A

Now determine the equivalent resistance Rn = Rt. Figure 5.5-6 shows the circuit after replacing the voltage
source by a short circuit and replacing the current source by an open circuit. Clearly, Rn= 3 0. Thus, we obtain the
Norton equivalent circuit as shown in Figure 5.5-7.

>4ft  >12 ft »3ft
-0
FIGURE 5.5-6 Circuit of Figure 5.5-4 with its sources FIGURE 5.5-7 Norton equivalent of the circuit of

deactivated. The voltage source becomes a short circuit, and the ~ Figure 5.5-4.
current source is replaced by an open circuit.

Example 5.5-3 Norton Equivalent Circuits and Dependent Sources

Find the Norton equivalent to the left of terminals a—b for the circuit of Figure 5.5-8.

Solution

First, we need to determine the short-circuit current /sc, using Figure 5.5-9. Note that vab = 0 when the terminals
are short circuited. Then,

i =5/500 = 10mA
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500 Q

10/ e25£l1

FIGURE 5.5-8 The circuitofExample 5.5-3 FIGURE 5.5-9 Circuit of Figure 5.5-8 with a short circuit

at the term inals a-b.

Therefore, for the right-hand portion of the circuit,
= -10/ = —100 mA

Now, to obtain /?t, we need voc = vab from Figure 5.5-8, where / is the current in the first (left-hand) mesh. Writing
the mesh current equation, we have

—5+ 500/ f-vab= 0
Also, for the right-hand mesh of Figure 5.5-8, we note that
vab= -25(100= -250/

Therefore, i=
Substituting / into the first mesh equation, we obtain

500 (—iil)'b‘—_fr

Therefore, vib= 5V

and R{-=— = — =500
—0.1

The Norton equivalent circuit is shown in Figure 5.5-10.

01 A CO < 50 g

-0 FIGURE 5.5-10 The Norton equivalent

b circuit for Exam ple 5.5-3.

EXERCISE 5.5-1 Determine values of Rt and /sc that cause the circuit shown in Figure
E 5.5-16 to be the Norton equivalent circuit of the circuit in Figure E 5.5-la.

@ () FIGURE E 551

Answer: Rt= 8 fl and /sc= 0.25 A
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56 MAXIMUM POWER TRANSFER

Many applications of circuits require the maximum power available from a source to be transferred to a
load resistor RL. Consider the circuit A shown in Figure 5.6-1, terminated with a load RL. As demonstrated
in Section 5.4, circuit A can be reduced to its Thevenin equivalent, as shown in Figure 5.6-2.

Circuit A
L
FIGURE 5.6-1 Circuit A contains resistors and FIGURE 5.6-2 The Thevenin equivalent is
independent and dependent sources. The load is the substituted for circuit A. Here we use vs for the
resistor R, . Thevenin source voltage.

The general problem of power transfer can be discussed in terms of efficiency and effectiveness.
Power utility systems are designed to transport the power to the load with the greatest efficiency by
reducing the losses on the power lines. Thus, the effort is concentrated on reducing Rt, which would
represent the resistance of the source plus the line resistance. Clearly, the idea of using super-
conducting lines that would exhibit no line resistance is exciting to power engineers.

In the case of signal transmission, as in the electronics and communications industries, the
problem is to attain the maximum signal strength at the load. Consider the signal received at the
antenna of an FM radio receiver from a distant station. It is the engineer’s goal to design a receiver
circuit so that the maximum power ultimately ends up at the output of the amplifier circuit connected
to the antenna of your FM radio. Thus, we may represent the FM antenna and amplifier by the
Thevenin equivalent circuit shown in Figure 5.6-2.

Let us consider the general circuit of Figure 5.6-2. We wish to find the value of the load
resistance RL such that maximum power is delivered to it. First, we need to find the power from

p = i 2R,
Because the current i is
_ Vs
/2L + Rt
we find that the power is

Assuming that vsand R, are fixed for a given source, the maximum power is a function of /?[ . To find
the value of R” that maximizes the power, we use the differential calculus to find where the derivative
dp/dRI equals zero. Taking the derivative, we obtain

dp _ 2(fr + [21)2- 27, + fIDFIL

dRi » (RL+ R,f
The derivative is zero when
(Rt+RD2- 2(Rt + RORL=0 (5.6-2)
or (*,+ RLXRt+R i- 2RI)=0 (5.6-3)

Solving Eg. 5.6-3, we obtain
Ri = R (5.6-4)
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P Max

FIGURE 5.6-3 Power actually attained

as RL varies in relation to R t.

To confirm that Eq. 5.6-4 corresponds to a maximum, it should be shown that Sp/dRi < 0.
Therefore, the maximum power is transferred to the load when RL is equal to the Thevenin equivalent
resistance Rt.

The maximum power, when RL = Rt, is then obtained by substituting RL = Rxin Eq. 5.6-1 to
yield

vs2ftt  vv

PM&X (2Rt)2 ~ 4Rt

The power delivered to the load will differ from the maximum attainable as the load resistance
R1 departs from RL —Rt. The power attained as RL varies from Rt is portrayed in Figure 5.6-3.

The maximum power transfer theorem states that the maximum power delivered to a load
by a source is attained when the load resistance, RL, is equal to the Thevenin resistance, Rt, of
the source.

/7L FIGURE 5.6-4 norton s equivatent circuit representing

the source circuit and a load resistor RL.Here we use is

as the Norton source current.

We may also use Norton’s equivalent circuit to represent circuit A in Figure 5.6.1. We then have
a circuit with a load resistor RL as shown in Figure 5.6-4. The current i may be obtained from the
current divider principle to yield

Therefore, the power p is

i ?
ISRR?RL (5.6-5)
(R, + R1)2
Using calculus, we can show that the maximum power occurs when
R1 = R x (5.6-6)

Then the maximum power delivered to the load is

fit's2
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Example 5.6-1 Maximum Power Transfer

Find the load resistance RL that will result in maximum power delivered
to the load for the circuit of Figure 5.6-5. Also, determine the maximum
power delivered to the load resistor.

Solution
First, we determine the Thevenin equivalent circuit for the circuit to the

left of terminals a-b. Disconnect the load resistor. The Thevenin voltage figure 5.6-5 Circuit for Example
source Mt is 5.6-1. Resistances in ohms.

v, = — x 180 = 150V
180

The Thevenin resistance Rt is

30+150

The Thevenin circuit connected to the load resistor is shown in Figure
5.6-6. Maximum power transfer is obtained when RL = Rt = 25 O.
Then the maximum power is FIGURE 5.6-6 Thevenin equivalent

vs2  (150) _ 295 W circuit connected to RL for Example
PMX 4RI 4x 25 5.6-1.
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Solution
We will obtain the Thevenin equivalent circuit for the part of the circuit to the left of terminals a,b in Figure

5.6-7a. First, we find as shown in Figure 5.6-76. The KVL gives
—6 “F 10/ —2Vab = 0

Also, we note that vab = voc = 4i. Therefore,

10/ - 8/ =6
or j = 3A. Therefore, v*. —4i = 12 V.

To determine the short-circuit current, we add a short circuit as shown in Figure 5.6-7c. The 4-fl resistor is

short circuited and can be ignored. Writing KVL, we have

—6+ 6/g; =0
Hence, = 1A

Therefore, /7, = v~/ix = 12 fi. The Thevenin equivalent circuit is shown in Figure 5.6-1d with the load resistor.
Maximum load power is achieved when R\_ — Rt = 1211. Then,

12¢
Pmex 4R1 = a(12) = 3W

EXERCISE 5.6-1 Find the maximum power that can be delivered to RL for the circuit of
Figure E 5.6-1, using a Thevenin equivalent circuit.

3Q 2Q

A A A 1 V. W o -

6Q

FIGURE E 5.6-1

Answer: 9 W when RL=4Cl

EXERCISE 5.6 2 Find the maximum power delivered to RL for the circuit of Figure E 5.6-2,
using a Norton equivalent circuit.

30 Q

A A A [0 -
5.6 A(]
FIGURE E 5.6-2

Answer: 175 W when RL = 28 fl

57 USING MATLAB TO DETERMINE THE THEVENIN
EQUIVALENT CIRCUIT

MATLAB can be used to reduce the work required to determine the Thevenin equivalent of a circuit
such as the one shown in Figure 5.7- la. First, connect a resistor, /?, across the terminals ofthe network,
as shown in Figure 5.7-16. Next, write node or mesh equations to describe the circuit with the resistor
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10Q 100

FIGURE 5.7-1 The circuit in (b) is obtained by connecting a resistor, R, across the terminals of the circuit in (a).

connected across its terminals. In this case, the circuit in Figure 5.7-1b is represented by the mesh
equations

12 = 28/i ~ 10/2 - 8/3
12 = —10/i +28/2 - ss3 (5.7-1)
0 = —87i —8/2 + (16 ~h/?)z3
The current zin the resistor R is equal to the mesh current in the third mesh, that is,
i=h (5.7-2)

The mesh equations can be written using matrices such as

"28 -10 -8 il "12¢
-10 28 -8 h = 12 (5.7-3)
-8 -8 6+R J3_ 0

Notice that i = ZBin Figure 5.7-16.

Figure 5.7-2a shows a MATLAB file named ch5ex.m that solves Eq. 5.7-1. Figure 5.7-3
illustrates the use of this MATLAB file and shows that when R = 6 H, then z= 0.7164 A, and that
when R = 12 W, then z= 0.5106 A.

% ch5ex.m MATLAB input file for Section 5-7
z = [28 -10 -8;
-10 28 Mesh Equation
-8 -8 16+R]; .
Equation 5.7-3

v * [ 12;

12;
Im» Z\V; % Calculate the mesh currents.
[ L) % Equation 5.7-2

VIGI RE 5.7-2 MATLARB file used to solve the mesh equation representing the circuit shown in Figure 5.7-1/2.
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File Edit Debug Desktop Window Help
D i2? n

Shortcuts j£] How to Add 1] What's New
>> R“6:
>> chbex

0.7164

» R=12;
>> chSex

0.5106

Start

FIGURE 5.7-3 Computer screen showing the use of MATLAB to analyze the circuit shown in Figure 5.7-1.

Next, consider Figure 5.7-4, which shows a resistor R connected across the terminals of a
Thevenin equivalent circuit. The circuit in Figure 5.7-4 is represented by the mesh equation

Vt= Rti + Ri (5.7-4)

As a matter of notation, let i = iawhen R Ra. Similarly, let i = ib when R = Rb. Equation 5.7-4
indicates that

Vt —R ia+ RMia

Vt = Rtib -f (5.7-3)
Equation 5.7-5 can be written using matrices as
1 A
R*a (5.7-6)
Rbk ]

Given ia Rd, D, and Rb, this matrix equation can be solved for Vtand Rh the parameters of the Thevenin
equivalent circuit. Figure 5.7-5 shows a MATLAB file that solves Eq. 5.7-6, using the values 2= 0.7164
A, Rb= 6 fl, ia= 0.5106 A, and Ra= 12 0. The resulting values of V{and Rt are

Vt = 10.664 V and Rt= 8.8863 O

I/ FIGURE 5.7-4 The circuit obtained by
connecting a resistor, R, across the
terminals of a Thevenin equivalent circuit.
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% Find the Thevenin equivalent of the circuit
% connected to the resister R.

Ra = 12; ia * 0.5106; % When R=Ra then izia
Rb = 6; ib = 0.7164; % When R=Rb then izib
A = [1 -ia;

1 -ib]; %

% Eqn 5.7-6

b = [Ra*ia; %

Rb*ibj; %
X = A\b;

vVt = X(I) % Open-Circuit Voltage

Rt = X(2) % Thevenin Resistance

FIGURE 5.7-5 MATLAB file used to calculate the open-circuit voltage and Thevenin resistance.

58 USING PSPICE TO DETERMINE THE THEVENIN
EQUIVALENT CIRCUIT

We can use the computer program PSpice to find the Thevenin or Norton equivalent circuit for
circuits even though they are quite complicated. Figure 5.8-1 illustrates this method. We calculate
the Thevenin equivalent of the circuit shown in Figure 5.8-la by calculating its open-circuit
voltage, Mux, and its short-circuit current, isc. To do so, we connect a resistor across its terminals as
shown in Figure 5.8-16. When the resistance of this resistor is infinite, the resistor voltage will be
equal to the open-circuit voltage, voc, as shown m Figure 5.8-16. On the other hand, when the
resistance of this resistor is zero, the resistor current will be equal to the short-circuit current, /sc, as
shown in Figure 5.8-Ic.

We can’t use either infinite or zero resistances in PSpice, so we will approximate the infinite
resistance by a resistance that is several orders of magnitude larger than the largest resistance in circuit
A. We can check whether our resistance is large enough by doubling it and rerunning the PSpice
simulation. If the computed value of voc does not change, our large resistance is effectively infinite.
Similarly, we can approximate a zero resistance by a resistance that is several orders of magnitude
smaller than the smallest resistance in circuit A. Our small resistance is effectively zero when halving
it does not change the computed value of zc.

@ (b) Q

FIGURE 5.8-1 A method for computing the values of  and i*-, using PSpice.
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Example 5.8-1 Using-PSpice to find a Thevenin
Equivalent Circuit

Use PSpice to determine the values ofthe open-circuit voltage, v»;, and the short-circuit current, ix , for the circuit
shown in Figure 5.8-2.

FIGURE 5.8-3 The circuit from Figure 5.8-2 after adding
a resistor across its terminals.

Solution
Following our method, we add a resistor across the terminals of the circuit as shown in Figure 5.8-3. Noticing that
the largest resistance in our circuit is 20 0 and the smallest is 5ft, we will determine voc and z”, using

Moc ~ v when R 20 fl
\/P
and = ) when R 5 ft

Using PSpice begins with drawing the circuit in the OrCAD Capture workspace as shown in Figure 5.8-4
(see Appendix A). The VCVS in Figure 5.8-3 is represented by a PSpice “Part E” in Figure 5.8-4. Figure 5.8-5
illustrates the correspondence between the VCVS and the PSpice “Part E.”

To determine the open circuit voltage, we set the resistance R to a very large value and perform a ‘Bias
Point’ simulation (see Appendix A). Figure 5.8-6 shows the simulation results when R — 20 MO. The voltage
across the resistor R is 33.6 V, so = 33.6 V. (Doubling the value of R and rerunning the simulation did not
change the value of the voltage across R, so we are confident that = 336 V)

FIGURE 5.8-4 The circuit from
Figure 5.8-3 drawn in the OrCAD
Capture workspace.
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M “ 1_ 3
0

4
2A 64 FIGURE 5.8-5 AVCVS (a) and
@) (b) the corresponding PSpice “Part E” (5.
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NS FIGURE 5.8-6 Simulation results for
Otems selected Swie=200% X570 Y-290 R = 20 MH.

To determine the short-circuit current, we set the resistance R to a very small value and perform a ‘Bias
Point’ simulation (see Appendix A). Figure 5.8-7 shows the simulation results when R = 1 ml). The voltage

across the resistor R is 12.6 mV. Using Ohm’s law, the value of the short-circuit current is

_ 126X AT
T ax 10l T

(Halving the value of R and rerunning the simulation did not change the value of the voltage across /?, so we are

confident that i*. = 12.6 A.)

» QCADCaptre 0S Do Edition [/ (STHAVAICL : PAGET)]

Fe Mav Fae Moo PRie Acesaoiess Quios Window Hip _nX
S e B [r ..V
SCHEMATICIW ™ - na »5 % i w
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2-wv- A'B
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20 _ 12.60mV
f\7I:I|'I’|k'|'| HI
WV GAIN=1,

FIGURE 5.8-7 Simulation results for

R=1MH = 0.001 n.

J
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59 HOWCANWECHECK ...?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For
example, proposed solutions to design problems must be checked to confirm that all of the
specifications have been satisfied. In addition, computer output must be reviewed to guard against

data-entry errors, and claims made by vendors must be examined critically.
Engineering students are also asked to check the correctness of their work. For example,
occasionally just a little time remains at the end of an exam. It is useful to be able to quickly identify

those solutions that need more work.
The following example illustrates techniques useful for checking the solutions of the sort of

problem discussed in this chapter.

Example 5.9-1 How Can We Check Thevenin
Equivalent Circuits?

Suppose that the circuit shown in Figure 5.9-la was built in the lab, using R = 2 kft, and that the voltage labeled v

was measured to be v = —1.87 V. Next, the resistor labeled R was changed to R = 5 kft, and the voltage v was
measured to be v = —3.0 V. Finally, the resistor was changed to R = 10 kft, and the voltage was measured to be
v = —3.75 V. How can we check that these measurements are consistent?
8 kQ 6 kQ
(b)

FIGURE 5.9-1 (a) A circuit with data obtained by measuring the voltage across the resistor R, and (b) the circuit obtained by
replacing the part of the circuit connected to R by its Thevenin equivalent circuit.

Solution
Let’s replace the part of the circuit connected to the resistor R by its Thevenin equivalent circuit. Figure 5.9-1£>

shows the resulting circuit. Applying the voltage division principle to the circuit in Figure 5.9-Ife gives

R
v= (5.9-1)

R + Rx
When R — 2 kfi, then v = —1.87 V, and Eq. 5.9-1 becomes

187 = 200 5.9-2
T 2000+ /2, “m (5.9-2)

Similarly, when R = 5 kfi, then v= —3.0 V, and Eq. 5.9-1 becomes

5000
-3.0 =

" 5000 + R, (5.9-3)
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Equations 5.9-2 and 5.9-3 constitute a set of two equations in two unknowns, voc and R,. Solving these equations
gives M= -5 Vand R' = 3333 ~ Substituting these values into Eg. 5.9-1 gives

BCEE 694
Equation 5.9-4 can be used to predict the voltage that would be measured if R = 10 kft. If the value of v obtained
using Eq. 5.9-4 agrees with the measured value of v, then the measured data are consistent. Letting R = 10 kO in
Eq. 5.9-4 gives

101000 --(_ 5) _ _ 315 v G8-5)
10,000 + 3333

Because this value agrees with the measured value of v, the measured data are indeed consistent.

— | 5.10 DESIGN EXAMPLE

STRAIN GAUGE BRIDGE

Strain gauges are transducers that measure mechanical strain. Electrically, the strain gauges
are resistors. The strain causes a change in resistance that is proportional to the strain.

Figure 5.10-1 shows four strain gauges connected in a configuration called a bridge.
Strain gauge bridges measure force or pressure (Doebelin, 1966).

Voltmeter q

+ V0 ~

Strain gauge bridge Amplifier

FIGURE 5.10-1 Design problem involving a strain gauge bridge.

The bridge output is usually a small voltage. In Figure 5.10-1, an amplifier multiplies
the bridge output, v,, by a gain to obtain a larger voltage, vG which is displayed by the
voltmeter.

Describe the Situation and the Assumptions
A strain gauge bridge is used to measure force. The strain gauges have been positioned so that
the force will increase the resistance of two of the strain gauges while, at the same time,
decreasing the resistance of the other two strain gauges.

The strain gauges used in the bridge have nominal resistances of R = 120 fi. (The
nominal resistance is the resistance when the strain is zero.) This resistance is expected to
increase or decrease by no more than 2 fl due to strain. This means that

-2n <al? <2n (5.10-1)
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The output voltage, vQ is required to vary from —10 V to -I1-10 V as AR varies from —2 0
to 20.

State the Goal
Determine the amplifier gain,  needed to cause vQto be related to AR by

V0= 5% \ R (5.10-2)
ohm

Generate a Plan
Use Thevenin’s theorem to analyze the circuit shown in Figure 5.10-1 to determine the
relationship between v and \R. Calculate the amplifier gain needed to satisfy Eq. 5.10-2.

Act on the Plan
We begin by finding the Thevenin equivalent of the strain gauge bridge. This requires two
calculations: one to find the open-circuit voltage, vt, and the other to find the Thevenin
resistance Rt. Figure 5.10-2a shows the circuit used to calculate vt. Begin by finding the
currents /i and i2.
50 mV 50 mV
n~ (R- AR) +W + A/f) ~ 2R

, 50 mV 50 mV
s,ra,larly =

Then vt

(R + AR)i| —(R —AiIDR
A 50 mV
- 2R (5-10-3)

A50 mV = 7A*M" AR = (0.4167 x 10_3)Ai?
R 120 ii

Figure 5.10-2/? shows the circuit used to calculate Rt. This figure shows that Rt is
composed of a series connection of two resistances, each of which is a parallel connection

I
o

CY (b)

FIGURE 5.10-2 Calculating (a) the open-circuit voltage, and (b) the Thevenin resistance of the strain gauge
bridge.
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FIGURE 5.10-3 Solution to the design problem.

of two strain gauge resistances

(R - AR)(R + AR) (R4AR)(R- AR) _"R2-AR2
Rt~ (R- AR)4 (R+ AR) + (R4 AR) + (R- AR) 2R

Because R is much larger than AR, this equation can be simplified to
RX=R

In Figure 5.10-3 the strain gauge bridge has been replaced by its Thevenin equivalent
circuit. This simplification allows us to calculate \j using voltage division

ioo kn

M= i6okn +/2M = ° " 88V =/°'4162 x ,0' 3)AR? (510'4)

Model the voltmeter as an ideal voltmeter. Then the  voltmeter current is / = 0 as shown in
Figure 5.10-3. Applying KVL to the right-hand mesh gives

vc 4-50(0) —bvi= 0
or V0= bv]= 6(0.4162 X 10~3)A/? (5.10-5)
Comparing Eq. 5.10-5 to Eq. 5.10-2 shows that the amplifier gain, b, must satisfy
6(0.4162 X 10~3) =5
Hence, the amplifier gain is

b= 12,013

Verify the Proposed Solution
Substituting b = 12,013 into Eq. 5.10-5 gives

V0= (12,013)(0.4162 x 10~3)A/? = 4.9998 AR (5.10-6)

which agrees with Eg. 5.10-2.
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511 SUMMARY

O Source transformations, summarized in Table 5.11-1, are used be replaced by either its Thevenin equivalent circuit or its

to transform a circuit into an equivalent circuit. A voltage
source Mx in series with a resistor Rt can be transformed into a
current source ix = vadR{and a parallel resistor /?,. Conversely,
a current source ix in parallel with a resistor Rxcan be trans-
formed into a voltage source v* = Rtix in series with a resistor
R{ The circuits in Table 5.11-1 are equivalent in the sense that
the voltage and current of all circuit elements in circuit B are
unchanged by the source transformation.

The superposition theorem permits us to determine the
total response of a linear circuit to several independent
sources by finding the response to each independent source
separately and then adding the separate responses
algebraically.

Thevenin and Norton equivalent circuits, summarized in
Table 5.11-2, are used to transform a circuit into a smaller,
yet equivalent, circuit. First the circuit is separated into two
parts, circuit A and circuit B, in Table 5.11-2. Circuit A can

Table 5111 Source Transformations

Norton equivalent circuit. The circuits in Table 5.11-2 are
equivalent in the sense that the voltage and current of all
circuit elements in circuit B are unchanged by replacing
circuit A with either its Thevenin equivalent circuit or its
Norton equivalent circuit.

Procedures for calculating the parameters i*., and Rxof
the Thevenin and Norton equivalent circuits are summarized
in Figures 5.4-3 and 5.4-4.

The goal of many electronic and communications circuits is
to deliver maximum power to a load resistor RL. Maximum
power is attained when RL is set equal to the Thevenin
resistance, Rt, of the circuit connected to RL. This results in
maximum power at the load when the series resistance Rt
cannot be reduced.

The computer program MATLAB can be used to reduce the
computational burden of calculating the parameters in
and R{of the Thevenin and Norton equivalent circuits.

THEVENIN CIRCUIT NORTON CIRCUIT

Table 5112 Thevenin and Norton Equivalent Circuits

ORIGINAL CIRCUIT THEVENIN CIRCUIT NORTON EQUIVALENT CIRCUIT

PROBLEMS

transformations. The part of the circuit to the left of the terminals
was not changed.

Section 5.2 Source Transformations

P 5.2-1 The circuit shown in Figure P 52-\a has been divided
into two parts. The circuit shown in Figure P 5.2-1/? was obtained
by simplifying the part to the right of the terminals using source

(a) Determine the values of Rxand vt in Figure P 5.2-1b.



(b) Determine the values of the current i and the voltage v in
Figure P 5.2-1/). The circuit in Figure P 5.2-1/? is equivalent
to the circuit in Figure P 5.2-1a. Consequently, the current /
and the voltage v in Figure P 5.2- la have the same values as
do the current i and the voltage v in Figure P 5.2-16.

(c) Determine the value of the current z in Figure P 5.2-1a

4Q

Figure F 5.2-1

P 5.2-2 Consider the circuit of Figure P 5.2-2. Find z by
simplifying the circuit (using source transformations) to a
single-loop circuit so that you need to write only one KVL
equation to find =

8Q

P 5.2-3 Find vo using source transformations ifi = 5/2 A in
the circuit shown in Figure P 5.2-3.

Hint: Reduce the circuit to a single mesh that contains the
voltage source labeled vc.

Answer: vc = 28 V
3A
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P 5.2-4 Determine the value of the current z in the circuit
shown in Figure P 5.2-4.

P 5.2-5 Use source transformations to find the current z in
the circuit shown in Figure P 5.2-5.

Answer: ia= 1A

Figure P 5.2-5

P 5.2-6 Use source transformations to find the value of the
voltage va in Figure P 5.2-6.

Answer: va= 7V

*P 5.2-7 Determine the power supplied by each of the
sources in the circuit shown in Figure P 5.2-7.

8V

Figure P 5.2-7

P 5.2-8 The circuit shown in Figure P 5.2-8 contains an
unspecified resistance R.
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(a) Determine the value of the current i when R = 4fl.
(b) Determine the value of the voltage v when R = 80.
(c) Determine the value of R that will cause i = 1 A

(d) Determine the value of R that will cause v = 16 V.

/ R

Figure P 5.2-8

P 5.2-9 Determine the value of the power supplied by the
current source in the circuit shown in Figure P 5.2-9.

15ft
------- WV e 1
24 > N2 A < 25 ft
B A 1
24 ft
32vr 12n

Figure P 5.2-9

Section 5.3 Superposition

P 5.3-1 The inputs to the circuit shown in Figure P 5.3-1 are
the voltage source voltages \f and v2. The output of the circuit
is the voltage vG The output is related to the inputs by

vO= avi + bv2

where a and b are constants. Determine the values of a and h.

Figure P 53-1

P 5.3-2 Anparticular linear circuit has two inputs, vi and v2 and
one output, V0. Three measurements are made. The first mea-
surement shows that the output is vQ= 4 V when the inputs are vj
—2 V and V2 = 0. The second measurement shows that the
output is vG= 10V when the inputs are v, = 0 and V2= —2.5 V.
In the third measurement, the inputs are vj = 3V and v2= 3 V.
What is the value of the output in the third measurement?

P 5.3-3 The circuit shown in Figure P 5.3-3 has two inputs, vs
and js, and one output i0. The output is related to the inputs by
the equation

*0 = ah + bvs

Given the following two facts:

The output is i0 = 0.45 A when the inputs are is = 0.25 A
andvs= 15V

and

The output is iQ= 0.30 A when the inputs are i8= 0.50 A
andvs —0V

Determine the values of the constants a and b and the values of
the resistances are R{and R2.

Answers: a=0.6 AJA,b=0.02AJ\,R\ = 30H,andR2= 20n.

R?

P 5.3-4 Use superposition to find v for the circuit of Figure
P 5.3-4.

10 Q 15ft

Figure P 5.3-4

P 5.3-5 Use superposition to find i for the circuit of Figure
P 5.3-5.

Answer: i —2 mA

20 kft fl 9 mA

Figure P 5.3-5

P 5.3-6 Use superposition to find i for the circuit of
Figure P5.3-6.
Answer: i = 3.5 mA

15 mA



P 5.3-7 Use superposition to find the value of the voltage vain
Figure P 5.3-7.
Answer: va= 7V

Figure P 5.3-7

P 5.3-8 Use superposition to find the value of the current zxin
Figure P 5.3-8.

Answer: ix—1/6 A

% 6Q 30

Figure P 5.3-8

P 5.3-9 The input to the circuit shown in Figure P 5.3-9a is
the voltage source voltage vs. The output is the voltage vQ The
current source current, /a, is used to adjust the relationship
between the input and output. The plot shown in Figure
P 5.3-9b specifies a relationship between the input and output
of the circuit. Design the circuit shown in Figure P 5.3-9a to
satisfy the specification shown in Figure P 5.3-96.

Hint: Use superposition to express the output as vD= cvs + dia
where ¢ and d are constants that depend on Ru R2, and A.
Specify values of Rj, R2, and A to cause the required value ofc.

Finally, specify a value of ia to cause the required
value of dL.

Figure P 5.3-9
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*P 5.3-10 The input to the circuit shown in Figure P 5.3-10 is
the voltage source voltage, vs. The output is the voltage vQ The
current source current, z, is used to adjust the relationship
between the input and output. Design the circuit so that input
and output are related by the equation vQ= 2vs -I- 9.

Hint: Determine the required values of A and ia

P 5.3-11 The circuit shown in Figure P 5.3-11 has three
inputs: vb v2, and /3. The output of the circuit is vG The output
is related to the inputs by

vo= aw + bv2+ c/3
where a, 6, and ¢ are constants. Determine the values ofa, 6, andc.
8Q "2
-AAA/———- Jrmme-

Figure P 5.3-11

P 5.3-12 Determine the voltage v@f) for the circuit shown in
Figure P 5.3-12.

12 cos 2tV

Figure P 5.3-12

P 5.3-13 Determine the value of the voltage vDin the circuit
shown in Figure P 5.3-13.

Figure P 5.3-13
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*P 5.3-14 The circuit shown in Figure P 5.3-14 has two
inputs, vj and v2, and one output, vc. The output is related to the
input by the equation

V0 = avi - bv2
where a and b are constants that depend on /?i, R2, and R$.

(a) Use superposition to show that when R3 = R{ || R2 and
R2 = nRu
1

and b:2n+2

3% on+2

(b) Design this circuit so that a = 4b.

Figure P 5.3-14

P 5.3-15 The input to the circuit shown in Figure P 5.3-15
is the current ix. The output is the voltage vQ The current i2
is used to adjust the relationship between the input and
output. Determine values of the current i2 and the resist-
ance, R, that cause the output to be related to the input by
the equation

VW= -051+4

Figure P 5.3-15

P 5.3-16 Determine values of the current, za, and the resist-

ance, R, for the circuit shown in Figure P 5.3-16.

8V

P 5.3-17 The circuit shown in Figure P 5.3-17 has three
inputs: v,, i2, and v3. The output of the circuit is the current i0.
The output of the circuit is related to the inputs by

i\ = av0+ bv2-fci3
where a, b, and c are constants. Determine the values of
a, byand c.

20Q

Figure P 5.3-17

P 5.3-18 Using the superposition principle, find the value of
the current measured by the ammeter in Figure P 5.3-18a.

Hint: Figure P 5.3-18/? shows the circuit after the ideal

ammeter has been replaced by the equivalent short circuit
and a label has been added to indicate the current measured

by the ammeter, im.

25 3
2+3

Answer: im = 5=5—-3=2A
3+2

25V

Figure P 5.3-18 (a) A circuit containing two independent
sources, (b) The circuit after the ideal ammeter has been replaced
by the equivalent short circuit and a label has been added to
indicate the current measured by the ammeter, zn

P 5.3-19 Using the superposition principle, find the value of
the voltage measured by the voltmeter in Figure P 5.3-19a.



Problems-——-( 197

Hint: Figure P 5.3-19/) shows the circuit after the ideal ~Answer: = —12Vand Rt= 16 ft

voltmeter has been replaced by the equivalent open circuit
and a label has been added to indicate the voltage measured 10 ft 8ft

by the voltmeter, vm

. 18
Answer: V\fn y5) » 3+ (3+9)

Figure P 5.4-2

P 5.4-3 The circuit shown in Figure P 5.4-36 is the Thevenin
equivalent circuit of the circuit shown in Figure P 5.4-3a. Find the
value of the open-circuit voltage, e, and Thevenin resistance, Rt.

Answer: voc = 2W and Rt = 4 fl

Y 12V r.
-0
L b
t)5A I3n  "'m< 3ft
f 1 3ft ~ 1
(b)
(@)

Figure P 5.3-19 (a) A circuit containing two independent
sources. (b) The circuit after the ideal voltmeter has been
replaced by the equivalent open circuit and a label has been
added to indicate the voltage measured by the voltmeter, vm

Figure P 5.4-3

P 5.4-4 Find the Thevenin equivalent circuit for the circuit
shown in Figure P 5.4-4.

12 ft
Section 5.4 Thevenin's Theorem e V7 \p—
P 5.4-1 Determine values of Rtand  that cause the circuit 6ft 10 ft
shown in Figure P 5.4-16 to be the Thevenin equivalent circuit — Wyv- -AAA-
of the circuit in Figure P 5.4-la. 18V 3 ft

Hint: Use source transformations and equivalent resistances

to reduce the circuit in Figure P 5.4-1a until it is the circuit in

Figure P 5.4-16.

Answer: Rt= 5ft andvoc= 2V P 5.4-5 Find the Thevenin equivalent circuit for the circuit
shown in Figure P 5.4-5.

Figure P 5.4-4

Answer: vac= -2 V and R{= -8/3 ft

0.75i;,

(@)

Figure P 54-1

P 5.4-2 The circuit shown in Figure P 5.4-26 is the Thevenin
equivalent circuit of the circuit shown in Figure P 5.4-2a. Find
the_ value of the open-circuit voltage, v», and Thevenin
resistance, Rx Figure P 5.4-5
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P 5.4-6 Find the Thevenin equivalent circuit for the circuit
shown in Figure P 5.4-6.

Figure F 5.4-6

P 5.4-7 The circuit shown in Figure P 5.4-7 has four un-
specified circuit parameters: vs, R2, and d, where d is the
gain of the CCCS.

(a) Show that the open-circuit voltage, v, the short-circuit
current, i®, and the Thevenin resistance, R&of this circuit

are given by
R2(d+ 1)
Mc  Ri+(d+1)R2\%
S Rl
and
R\Ri
RU= Rit (d-h 1)+2

(b) Let Ri = R2 = 1kft. Determine the values of vsand d
required to cause = 5V and Rx= 625 ft.

Figure P 5.4-7

P 5.4-8 A resistor, /?, was connected to a circuit box as
shown in Figure P 5.4-8. The voltage, v, was measured. The
resistance was changed, and the voltage was measured again.
The results are shown in the table. Determine the Thevenin
equivalent of the circuit within the box and predict the
voltage, v, when R = 8 kft.

2 kf£2 6 V

4 kQ 2 Vv

Figure P 5.4-8

P 5.4-9 Aresistor, R, was connected to a circuit box as shown
in Figure P 5.4-9. The current, z was measured. The resistance

was changed, and the current was measured again. The results

are shown in the table.

(a) Specify the value of R required to cause i = 2 mA.

(b) Given that R > 0, determine the maximum possible value
of the current z

Hint: Use the data in the table to represent the circuit by a
Thevenin equivalent.

2 kQ 4 mA

4 kn 3 mA

Figure P 5.4-9

P 5.4-10 Measurements made on terminals a-b of a linear
circuit, Figure P 5.4-10a, which is known to be made up only
of independent and dependent voltage sources and current
sources and resistors, yield the current-voltage characteristics
shown in Figure P 5.4-106. Find the Thevenin equivalent
circuit.

(a)

i(mA)

40

30 -

20,

(b)

Figure P 5.4-10

P 5.4-11 For the circuit of Figure P 5.4-11, specify the
resistance R that will cause current Zto be 2 mA. The current
7 has units of amps.



Hint: Find the Thevenin equivalent circuit of the circuit
connected to R
2000ia

Figure P 5.4-11

P 5.4-12 For the circuit of Figure P 5.4-12, specify the value
of the resistance RL that will cause current zZLto be -2 A.

Answer: RI —12ft

Figure P 5.4-12

P 5.4-13 The circuit shown in Figure P 5.4-13 contains an
adjustable resistor. The resistance R can be set to any value in
the range 0 < R < 100 kft.

(@) Determine the maximum value of the current iathat can be
obtained by adjusting R. Determine the corresponding
value of R.

(b) Determine the maximum value of the voltage vathat can
be obtained by adjusting R. Determine the corresponding
value of R.

(c) Determine the maximum value of the power supplied to
the adjustable resistor that can be obtained by adjusting R.
Determine the corresponding value of R.

12 kQ
AW —|

18 kO
24 kO

ANV

P 5.4-14 The circuit shown in Figure P 5.4-14 consists of two
parts, the source (to the left of the terminals) and the load. The
load consists of a single adjustable resistor having resistance
0~ S 20 ft. The resistance R is fixed but unspecified. When
R1 = 4ft, the load current is measured to be ic = 0.375 A
When R1 —8 ft, the value of the load current is iQ= 0.300 A.

(a) Determine the value of the load current when RL = 10ft.
(b) Determine the value of R.

Problems---—- 1

48 Q

Figure P 5.4-14

P 5.4-15 The circuit shown in Figure P 5.4-15 contains an
unspecified resistance, R. Determine the value of R in each of
the following two ways.

(a) Write and solve mesh equations.
(b) Replace the part of the circuit connected to the resistor R
by a Thevenin equivalent circuit. Analyze the resulting

circuit.

Figure P 5.4-15

P 5.4-16 Consider the circuit shown in Figure P 5.4-16.
Replace the part of the circuit to the left of terminals a-b
by its Thevenin equivalent circuit. Determine the value of the
current iq.

Figure P 5.4-16

P 5.4-17 An ideal voltmeter is modeled as an open circuit. A
more realistic model of a voltmeter is a large resistance. Figure
P 5.4-17a shows a circuit with a voltmeter that measures the
voltage vm In Figure P 5.4-17/), the voltmeter is replaced by
the model of an ideal voltmeter, an open circuit. The voltmeter
measures vm, the ideal value of vm
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200Q ion rim

(p Voltmeter Q

10Q

200 Q

Figure P 5.4-17

As Rm—» oo, the voltmeter becomes an ideal voltmeter
and vm—>vmi. When Rm < oo, the voltmeter is not ideal and
vm> vmi. The difference between vmand vii is a measurement
error caused by the fact that the voltmeter is not ideal.

(a) Determine the value of vmi.

(b) Express the measurement error that occurs when Rm =
IOOCH as a percentage of vmi.

(c) Determine the minimum value of Rm required to ensure
that the measurement error is smaller than 2 percent of vmi.

P 5.4-18 Determine the Thevenin equivalent circuit for the
circuit shown in Figure P 5.4-18.

Figure P 5.4-18

P 5.4-19 Given that 0 < R < 00 in the circuit shown in
Figure P 5.4-19, consider these two observations:

Observation 1: WhenR = 2Clthen vR = 4 Vand iR= 2 A

Observation 1: When R= 6fithen vR = 6 Vand iR= 1A
Determine the following:

(@) The maximum value of zZRand the value of R that causes /R
to be maximal.

(b) The maximum value of vRand the value of R that causes
VR to be maximal.

(c) The maximum value ofpR = ZRvRand the value of R that
causes pR to be maximal.

Figure P 5.4-19

P 5.4-20 Consider the circuit shown in Figure P 5.4-20.
Determine

(a) The value of vRthat occurs when R = 9 0.
(b) The value of R that causes vVR= 5.4 V.
(c) The value of R that causes /R= 300 mA.

20d 6Q IR

AANV -AAAT-

300 mMA 30 R
(P v

Figure P 5.4-20

Section 5.5 Norton's Equivalent Circuit

P 5.5-1 The part of the circuit shown in Figure P 5.5-1a to the
left of the terminals can be reduced to its Norton equivalent
circuit using source transformations and equivalent resistance.
The resulting Norton equivalent circuit, shown in Figure
P 5.5-16, will be characterized by the parameters:

/sc=05Aand Rt= 200

(a) Determine the values of vs and R}.
(b) Given that 0 < R2 < 00, determine the maximum values
of the voltage, v, and of the power, p = vi.

Answers: vs= 375V, R\ =250, max v = 10V and max
p= 125 W
50 a
~nvtl .. 0
0.25 A(T) Ri~v ~ Ro
G — H r
(@)
(b)

Figure P 5.5-1



P 5.5-2 Two black boxes are shown in Figure P 5.5-2. Box A
contains the Thevenin equivalent of some linear circuit, and box
B contains the Norton equivalent of the same circuit. With
access to just the outsides of the boxes and their terminals, how
can you determine which is which, using only one shorting wire?

Box A Box B

P 5.5-3 Find the Norton equivalent circuit for the circuit
shown in Figure P 5.5-3.

Answer: Rt=20 and/sc= —7.5 A
1Q« ~) 3a
GAd)

-0b
Figure P 5.5-3
P 5.5-4 Find the Norton equivalent circuit for the circuit
shown in Figure P 5.5-4.

5Q
A/W—°a

Figure P 5.5-4

P 5.5-5 The circuit shown in Figure P 5.5-56 is the Norton
equivalent circuit of the circuit shown in Figure P 5.5-5a. Find
the value of the short-circuit current, /sc, and Thevenin resist-
ance, /2.

Answer: isc= 113 Aand Rt= 7.57(1

(b)

Figure P 5.5-5

Problems-—-—-- ( 201

P 5.5-6 The circuit shown in Figure P 5.5-6b is the Norton
equivalent circuit of the circuit shown in Figure P 5.5-6a. Find
the value of the short-circuit current, /sc, and Thevenin resist-

ance, Rt.
= —24 A and =

6Q

Answer: i —3Q

3Q

(b)
Figure P 5.5-6

P 5.5-7 Determine the value of the resistance R in the circuit
shown in Figure P 5.5-7 by each of the following methods:

(a) Replace the part of the circuit to the left of terminals a-b
by its Norton equivalent circuit. Use current division to
determine the value of R.

(b) Analyze the circuit shown Figure P 5.5-7 using mesh
equations. Solve the mesh equations to determine the

value of R.
10 kQ
25V (M ‘b < T>4/b RN 10.5mA
Figure P 5.5-7

*P 5.5-8 The device to the right of terminals a-b in Figure
P 5.5-8 is a nonlinear resistor characterized by

V2
1~ 2
Determine the values of / and v.

2A

Figure P 5.5-8

P 5.5-9 Find the Norton equivalent circuit for the circuit
shown in Figure P 5.5-9.
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2«
<0>— vw  —VA—o
s @ 2 A % |~3n
-0
b
Figure P 5.5-9

P 5.5-10 Find the Norton equivalent circuit for the circuit
shown in Figure P 5.5-10.

P 5.5-11 An ideal ammeter is modeled as a short circuit. A
more realistic model of an ammeter is a small resistance.
Figure P 55-11a shows a circuit with an ammeter that
measures the current im. In Figure P 5.5-10/?, the ammeter
is replaced by the model of an ideal ammeter, a short circuit.
The ammeter measures /mi, the ideal value of im.

4 kn

(b)

=)

4 kQ

Figure P 55-11

As Rm—»9, the ammeter becomes an ideal ammeter and
im  imv When Rm > 0, the ammeter is not ideal and im < imi.
The difference between im and im*is a measurement error
caused by the fact that the ammeter is not ideal.

(a) Determine the value of imi.

(b) Express the measurement error that occurs when Rm =
20O as a percentage of imi.

(c) Determine the maximum value of Rm required to ensure
that the measurement error is smaller than 2 percent of zmi.

P 5.5-12 Determine values of Rtand iK that cause the circuit
shown in Figure P 5.5-12/? to be the Norton equivalent circuit
of the circuit in Figure P 5.5-12a.

Answer: Rt=3Handix = 2 A

(a)
Figure p 5.5-12

P 5.5-13 Use Norton’s theorem to formulate a general
expression for the current i in terms of the variable resistance
R shown in Figure P 5.5-13.

Answer: i = 20/(8 4 R) A
8 a

30V 16 a

Figure p 5.5-13

Section 5.6 Maximum Power Transfer

P 5.6-1 The circuit shown in Figure P 5.6-1 consists of two
parts separated by a pair of terminals. Consider the part of the
circuit to the left of the terminals. The open circuit voltage is
vac = 8V, and short-circuit current is ¢ = 2 A. Determine the
values of (a) the voltage source voltage, vs, and the resistance
R2 and (b) the resistance R that maximizes the power deliv-
ered to the resistor to the right of the terminals, and the
corresponding maximum power.

Figure P 5.6-1



P 5.6-2 The circuit model for a photovoltaic cell is given in
Figure P 5.6-2 (Edelson, 1992). The current ig is proportional
to the solar insolation (kKW/m2).

(a) Find the load resistance, RL, for maximum power transfer.
(b) Find the maximum power transferred when /s 1A

Figure P 5.6-2 Circuit model of a photovoltaic cell.

P 5.6-3 For the circuit in Figure P 5.6-3, (a) find R such that
maximum power is dissipated in R, and (b) calculate the value
of maximum power.

Answer: R = 60d and Pmax= 54 mW

100 a

150 Q

Figure P 5.6-3

P 5.6-4 For the circuit in Figure P 5.6-4, prove that for Rs
variable and RL fixed, the power dissipated in RL is maximum
when R* = 0.

Figure P 5.6-4

P 5.6-5 Find the maximum power to the load R{ if the
maximum power transfer condition is met for the circuit of
Figure P 5.6-5.

Answer: maxpL= 0.75 W

Problems-—-—- ( 203

P 5.6-6 Determine the maximum power that can be absorbed
by a resistor, /?, connected to terminals a-b of the circuit
shown in Figure P 5.6-6. Specify the required value of R.

Figure P 5.6-6 Bridge circuit.

P 5.6-7 Figure P 5.6-7 shows a source connected to a load
through an amplifier. The load can safely receive up to 15 W of
power. Consider three cases:

(@) A=20V/V andRQ= 100. Determine the value of RLthat
maximizes the power delivered to the load and the corre-
sponding maximum load power.

(b) A =20V/V and RL= 8 fl. Determine the value of ROthat
maximizes the power delivered to the load and the corre-
sponding maximum load power.

(c) RO= 100 and RL = 8Cl. Determine the value of A that
maximizes the power delivered to the load and the corre-
sponding maximum load power.

amplifier load

Figure P 5.6-7

P 5.6-8 The circuit in Figure P 5.6-8 contains a variable
resistance, R, implemented using a potentiometer. The resistance
ofthe variable resistor varies over the range 0 < R < 1000 fl. The
variable resistor can safely receive /4 W power. Determine the
maximum power received by the variable resistor. Is the circuit
safe?

P 5.6-9 For the circuit of Figure P 5.6-9, find the power
delivered to the load when RL is fixed and Rt may be varied
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between 10 and 5fl. Select Rt so that maximum power is
delivered to RL.

Answer: 13.9 W

Figure P 5.6-9

P 5.6-10 A resistive circuit was connected to a variable resistor,
and the power delivered to the resistor was measured as shown in
Figure P 5.6-10. Determine the Thevenin equivalent circuit.

Answer: Rt=20d and =20V

R (ohms)

Figure P 5.6-10

Section 5.8 Using PSpice to Determine the
Thevenin Equivalent Circuit

P 5.8-1 The circuit shown in Figure P 5.8-1 is separated into two
parts by a pair ofterminals. Call the part ofthe circuit to the left of
the terminals circuit A and the part of the circuit to the right of the
terminal circuit B. Use PSpice to do the following:

(a) Determine the node voltages for the entire circuit.

(b) Determine the Thevenin equivalent circuit of circuit A.

(c) Replace circuit A by its Thevenin equivalent and deter-
mine the node voltages of the modified circuit.

(d) Compare the node voltages of circuit B before and after
replacing circuit A by its Thevenin equivalent.

-M/Vn - VA -
ion 40Q 60 Q
Uuvw - —f-0-<
)15V 250 mA 20 3
12 Q
Figure P 58-1
Section 5.9 How Can We Check ...?

P 5.9-1 For the circuit of Figure P 5.9-1, the current i has
been measured for three different values of R and is listed in
the table. Are the data consistent?

mm /(mA)
5000  16.5
500 43.8

0 972
Figure P 59-1

P 5.9-2 Your lab partner built the circuit shown in Figure
P 5.9-2 and measured the current i and voltage v corresponding
to several values of the resistance R. The results are shown in
the table in Figure P 5.9-2. Your lab partner says that RL =
8000 fl is required to cause i = 1 mA. Do you agree? Justify
your answer.

R i Vv
open 0 mA 12V
10 kQ 0.857 mA 8.57 V
short 3 mA ovVv

Figure P 5.9-2

P 5.9-3 In preparation for lab, your lab partner determined the
Thevenin equivalent of the circuit connected to RL in Figure
P 5.9-3. She says that the Thevenin resistance isRt = yy R and the
open-circuit voltage is Mc = yy V. In lab, you built the circuit
using R —11Ofi and RL= 40 H and measured that i = 54.5 mA.
Is this measurement consistent with the prelab calculations?
Justify your answers.

3R



P 5.9-4 Your lab partner claims that the current i in Figure
P5.9.4 will be no greater than 12.0 mA, regardless of the value

of the resistance R. Do you agree?

i 500 O

1500 Q

P 5.9-5 Figure P 5.9-5 shows a circuit and some corresponding
data. Two resistances, R\ and R, and the current source current are
unspecified. The tabulated data provide values of the current, /,
and voltage, v, corresponding to several values of the resistance R.

(a) Consider replacing the part of the circuit connected to the
resistor R by a Thevenin equivalent circuit. Use the data in
rows 2 and 3 ofthe table to find the values of Rtand v*, the
Thevenin resistance, and the open-circuit voltage.

(b) Use the results of part (a) to verify that the tabulated data
are consistent.

(c) Fill in the blanks in the table.

(d) Determine the values of R\ and =.

PSpice Problems

SP 5-1 The circuit in Figure SP 5-1 has three inputs: vj, v2,
and i3. The circuit has one output, vc. The equation

vo=avV+bWwi4cn

expresses the output as a function of the inputs. The
coefficients a, b, and c are real constants.

(a) Use PSpice and the principle of superposition to determine
the values of a, b, and c.

(b) Suppose vi = 10V and v2 = 8 V, and we want the output to

be v = 7 V. What is the required value of /3?
Hint: The output is given by vo= awhenv, = 1V,v2=0V,

and 3= 0 A

100 Q

Figure SP 5-1

PSpice Problems

RM 1A v,\/
0 3 0
10 1.333 13.33
20 0.857 17.14
40 05 ?
80 ? 21.82

(b)

Figure P 5.9-5

Answer:(a) vD= 0.3333vY4 0.3333v24 33.3323, (b) i3= 30
mA

SP 5-2 The pair of terminals a-b partitions the circuit in
Figure SP 5-2 into two parts. Denote the node voltages at
nodes 1and 2 as v, and v2. Use PSpice to demonstrate that
performing a source transformation on the part of the
circuit to the left of the terminal does not change anything
to the right of the terminals. In particular, show that the
current, iQ and the node voltages, \j and v2, have the same
values after the source transformation as before the source
transformation.

SP 5-3 Use PSpice to find the Thevenin equivalent circuit for
the circuit shown in Figure SP 5-3.
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Answer: = -2 Vand Rt—-8/3 (1
0.75v~

Figure SP 5-3

SP 5-4 The circuit shown in Figure SP 5-46 is the Norton
equivalent circuit of the circuit shown in Figure SP 5-4a.

Design Problems

DP 5-1 The circuit shown in Figure DP 5-la has four un-
specified circuit parameters: vs, Ru R2, and Rt,. To design this
circuit, we must specify the values of these four parameters. The
graph shown in Figure DP 5-16 describes a relationship between
the current i and the voltage v.

R1 R3 It
—WA— o0—
1?2 v
— b— y

()

Figure DP 5-1

Specify values of vs, Rj, R2, and R3that cause the current /
and the voltage v in Figure DP 5-la to satisfy the relationship
described by the graph in Figure DP 5-16.

Find the value of the short-circuit current, fsc, and Thevenin
resistance, Rv

Answer: ix — 113 Vand Rx= 7.57H

(a) (b)

Figure SP 5-4

First Hint: The equation representing the straight line in Figure
DP 5-16 is

-R X + Mx
That is, the slope of the line is equal to -1 times the Thevenin
resistance, and the v-intercept is equal to the open-circuit voltage.

\ =

Second Hint: There is more than one correct answer to this
problem. Try setting R\ —R2.

DP 5-2 The circuit shown in Figure DP 5-2a has four un-
specified circuit parameters: is, Ru R2, and /?3. To design this
circuit, we must specify the values of these four parameters. The
graph shown in Figure DP 5-26 describes a relationship between
the current / and the voltage v.

Specify values of is, R\,R 2, and R3that cause the current i
and the voltage v in Figure DP 5-2a to satisfy the relationship
described by the graph in Figure DP 5-26.

First Hint: Calculate the open-circuit voltage, v*, and the
Thevenin resistance, Rt, of the part of the circuit to the left
of the terminals in Figure DP 5-2a.

Second Hint: The equation representing the straight line in
Figure DP 5-26 is

V= —Rti + Voc

That is, the slope of the line is equal to -1 times the Thevenin
resistance, and the v-intercept is equal to the open-circuit
voltage.

Third Hint: There is more than one correct answer to this
problem. Try setting both R3 and R\ + R2 equal to twice the
slope of the graph in Figure DP 5-26.

R2
—A/W -

12 r3

(a)



Figure DP 5-2

DP 5-3 The circuit shown in Figure DP 5-3a has four un-
specified circuit parameters: vs, R\, R2, and R$. To design this
circuit, we must specify the values of these four parameters. The
graph shown in Figure DP 5-36 describes a relationship between
the current i and the voltage v.

Figure DP 5-3

Design Problems

Is it possible to specify values of vs, Ru R2, and /23 that
cause the current / and the voltage v in Figure DP 5-\a to satisfy
the relationship described by the graph in Figure DP 5-36?
Justify your answer.

DP 5-4 The circuit shown in Figure DP 5-4a has four un-
specified circuit parameters: vs, R\, R2, and d, where d is the gain
of the CCCS. To design this circuit, we must specify the values
of these four parameters. The graph shown in Figure DP 5-46
describes a relationship between the current j and the voltage v.

Specify values of vs, R\, R2, and d that cause the current :
and the voltage v in Figure DP 5-4a to satisfy the relationship
described by the graph in Figure DP 5-46.

First Hint: The equation representing the straight line in Figure
DP 5-46 is

V= -Rti+ Voc

That is, the slope of the line is equal to —1 times the Thevenin
resistance and the v-intercept is equal to the open-circuit
voltage.

Second Hint: There is more than one correct answer to this
problem. Try setting R} = R2-

*a

v, V

Figure DP 5-4
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61 INTRODUCTION

This chapter introduces another circuit element, the operational amplifier, or op amp. We will learn
how to analyze and design electric circuits that contain op amps. In particular, we will see that:

» Several models, of varying accuracy and complexity, are available for operational amplifiers.
Simple models are easy to use. Accurate models are more complicated. The simplest model of the
operational amplifier is the ideal operational amplifier.

e Circuits that contain ideal operational amplifiers are analyzed by writing and solving node
equations.

e Operational amplifiers can be used to build circuits that perform mathematical operations. Many of
these circuits are widely used and have been named. Figure 6.5-1 provides a catalog of some useful
operational amplifier circuits.

« Practical operational amplifiers have properties that are not included in the ideal operational
amplifier. These include the input offset voltage, bias current, dc gain, input resistance, and output
resistance. More complicated models are needed to account for these properties.

6.2 THE OPERATIONAL AMPLIFIER

The operational amplifier is an electronic circuit element designed to be used with other circuit
elements to perform a specified signal-processing operation. The *"A 741 operational amplifier is
shown in Figure 6.2-1a. It has eight pin connections, whose functions are indicated in Figure 6.2-1h.
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FIGURE 6.2-1 (a) A (iA741 integrated circuit has eight connecting pins. (b) The correspondence between the circled
pin numbers of the integrated circuit and the nodes of the operational amplifier.

The operational amplifier shown in Figure 6.2-2 has five terminals. The names of these terminals
are shown in both Figure 6.2-16 and Figure 6.2-2. Notice the plus and minus signs in the triangular part
of the symbol of the operational amplifier. The plus sign identifies the noninverting input, and the
minus sign identifies the inverting input.

The power supplies are used to bias the operational amplifier. In other words, the power supplies
cause certain conditions that are required for the operational amplifier to function properly. It is
inconvenient to include the power supplies in drawings of operational amplifier circuits. These power
supplies tend to clutter drawings of operational amplifier circuits, making them harder to read.
Consequently, the power supplies are frequently omitted from drawings that accompany explanations
of the function of operational amplifier circuits, such as the drawings found in textbooks. It is
understood that power supplies are part of the circuit even though they are not shown. (Schematics, the
drawings used to describe how to assemble a circuit, are a different matter.) The power supply voltages
are shown in Figure 6.2-2, denoted as v+ and v_.

Because the power supplies are frequently omitted from the drawing of an operational amplifier
circuit, it is easy to overlook the power supply currents. This mistake is avoided by careful application
of Kirchhoffs current law (KCL). As a general rule, it is not helpful to apply KCL in a way that
involves any power supply current. Two specific cases are of particular importance. First, the ground
node in Figure 6.2-2 is a terminal of both power supplies. Both power supply currents would be
involved if KCL were applied to the ground node. These currents must not be overlooked. It is best
simply to refrain from applying KCL at the ground node of an operational amplifier circuit. Second,

HIGI RE 6.2-2 An op amp, including power supplies v and v
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KCL requires that the sum of all currents into the operational amplifier be zero:
11 R4 Po+ 2+ =0

Both power supply currents are involved in this equation. Once again, these currents must not be
overlooked. It is best simply to refrain from applying KCL to sum the currents into an operational
amplifier when the power supplies are omitted from the circuit diagram.

6.3 THE IDEAL OPERATIONAL AMPLIFIER

Operational amplifiers are complicated devices that exhibit both linear and nonlinear behavior. The
operational amplifier output voltage and current, vGand i0, must satisfy three conditions for an
operational amplifier to be linear, that is:
IVO1< Vsat
|*0| N *ggt
dvo(t)
dt

< SR (6.3-1)

The saturation voltage, vsat, the saturation current, /sat, and the slew rate limit, SR, are all parameters of
an operational amplifier. For example, if a /zA741 operational amplifier is biased using +15-V and
—15-V power supplies, then

\Y
vst = 14V, =zt= 2mA, and SR = 500,000 — (6.3-2)
S

These restrictions reflect the fact that operational amplifiers cannot produce arbitrarily large voltages
or arbitrarily large currents or change output voltage arbitrarily quickly.

Figure 6.3-1 describes the ideal operational amplifier. The ideal operational amplifier is a
simple model of an operational amplifier that is linear. The ideal operational amplifier is characterized
by restrictions on its input currents and voltages. The currents into the input terminals of an ideal
operational amplifier are zero. Consequently, in Figure 6.3-1,

ii=0 and =0

The node voltages at the input nodes of an ideal operational amplifier are equal. Consequently, in
Figure 6.3-1,

V2=V

The ideal operational amplifier is a model ofa linear operational amplifier, so the operational amplifier
output current and voltage must satisfy the restrictions in Eq. 6.3-1. If they do not, then the ideal
operational amplifier is not an appropriate model of the real operational amplifier. The output current
and voltage depend on the circuit in which the operational amplifier is used. The ideal op amp
conditions are summarized in Table 6.3-1.

Inverting
input node

Output

T FIGURE 6.3-1 The ideal operational amplifier.
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Operating Conditions for an Ideal Operational Amplifier

IDEAL CONDITION

VARIABLE
. . *i=0
Inverting node input current
Noninverting node input current i2=0
v2—\i =0

Voltage difference between inverting node voltage v and
noninverting node voltage v2

Example 6.3-1 Ideal Operational Amplifier

Consider the circuit shown in Figure 6.3.2a. Suppose the operational amplifier is a /xA741 operational amplifier.
Model the operational amplifier as an ideal operational amplifier. Determine how the output voltage, VG is related
to the input voltage, vs.

Inverting
' input node h-o
vi=v06 FIGURE 6.3-2 (a) The
V~W- "o operational amplifier
Output circuit for Example 6.3-1
node .
ny and (6) an equivalent
. circuit showing the
consequences of
modeling the operational
amplifier as an ideal
operational amplifier. The
voltages Vi, v2, and vGare
(@) (b) node voltages.

Solution

Figure 6.3-2b shows the circuit when the operational amplifier of Figure 6.3-2a is modeled as an ideal operational
amplifier.

1 The inverting input node and output node of the operational amplifier are connected by a short circuit, so the
node voltages at these nodes are equal:

vi = V0
2. Thevoltages at the inverting and noninverting nodes of an ideal op amp are equal:
V2=M=Wv0
3. Thecurrents into the inverting and noninverting nodes of an operational amplifierarezero, S0

=0 and ®=10

4'Thﬁ current in resistor Rsisi2 = 0, so the voltage across Rsis 0 V. The voltage acrossR*isvs - v2= vs - \V0;
ence,

vs- V0= 0

or



212 V-— The Operational Amplifier

Does this solution satisfy the requirements of Egs. 6.3-1 and 6.3-2? The output current ofthe operational amplifier
must be calculated. Apply KCL at the output node of the operational amplifier to get

+ o+ —0
AL
Because it = 0,

lo—-
RL

Now Egs. 6.3-1 and 6.3-2 require
Vet < 14V

< 2mA
RL

< 500,000 -
dt\s S

For example, when vs = 10V and Ri = 20 kfi, then
vl = 10V < 14V

10V 1
20kfl 2MA < 2MA

0 < 500,000
dt

This is consistent with the use of the ideal operational amplifier. On the other hand, when vs= 10V and
Ri = 2 kfi, then

= 5mA > 2mA

so it is not appropriate to model the “uA741 as an ideal operational amplifier when vs = 10V and Rl —2 kfi.
When vs = 10V, we require R* > 5kfi to satisfy Eq. 6.3-1.

6.4 NODAL ANALYSIS OF CIRCUITS CONTAINING
IDEAL OPERATIONAL AMPLIFIERS  —erermermeree

It is convenient to use node equations to analyze circuits containing ideal operational
amplifiers.

There are three things to remember.

1 The node voltages at the input nodes of ideal operational amplifiers are equal. Thus, one of these
two node voltages can be eliminated from the node equations. For example, in Figure 6.4-1, the
voltages at the input nodes of the ideal operational amplifier are v{and v2. Because

vi = v2

v2 can be eliminated from the node equations.
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The currents in the input leads of an ideal operational amplifier are zero. These currents are
involved in the KCL equations at the input nodes of the operational amplifier.

The output current of the operational amplifier is not zero. This current is involved in the KCL
equations at the output node of the operational amplifier. Applying KCL at this node adds another
unknown to the node equations. If the output current of the operational amplifier is not to be
determined, then it is not necessary to apply KCL at the output node of the operational amplifier.

Example 6.4-1 Difference Amplifier y

The circuit shown in Figure 6.4-1 is called a difference amplifier. The operational amplifier has been modeled as
an ideal operational amplifier. Use node equations to analyze this circuit and determine vDin terms of the two

source voltages, va and vb.

Inverting
input node 30 kQ
-AAAN vl mAAAr
10 kQ .
il«0 Output
V2 =i X node
10kQ | [\lonjnvertjng 12 0
vb 30 kQ > input node 50 kQ > vo
FIGURE 6.4-1 Circuit of Example 6.4-1.
Solution
The node equation at the noninverting node of the ideal operational amplifier is
V2 v2- Wb

30.000 10,000
Because v2= vj and i2 = 0, this equation becomes
Vi vi - W _
30,000 10,000
Solving for vj, we have
vi = 0.75 «
The node equation at the inverting node of the ideal operational amplifier is
M~V M~Ww
10.000 30,000
Because M = 0.75vb and ii = 0, this equation becomes
0-75 m\b- va 0.75 *\b- V0
10,000 30,000
Solving for vQ we have

v0 = 3(vb - va)

The difference amplifier takes its name from the fact that the output voltage, V0, is a function of the difference,
r va, oi the input voltages.



214 )------- The Operational Amplifier

Example 6.4-2 Analysis of a Bridge Amplifier

Next, consider the circuit shown in Figure 6.4-2tf. This circuit is called a bridge amplifier. The part of the circuit that is
called a bridge is shown in Figure 6.4-26. The operational amplifier and resistors, R5and #6, are used to amplify the
output ofthe bridge. The operational amplifier in Figure 6.4-2a has been modeled as an ideal operational amplifier. As a
consequence, W = 0 and i\ = 0, as shown. Determine the output voltage, v in terms of the source voltage, vs.

(@) (b)

> - RIR2 + R3Ra
X RI+R2 r3+r4

FIGI RE 6.4-2 (a) A bridge amplifier, including

the bridge circuit. (b) The bridge circuit and (c)

its Thevenin equivalent circuit, {d) The bridge

amplifier, including the Thevenin equivalent of
) the bridge.

Solution
Here is an opportunity to use Thevenin's theorem. Figure 6.4-2c shows the Thevenin equivalent of the bridge
circuit. Figure 6.4-2J shows the bridge amplifier after the bridge has been replaced by its Thevenin equivalent.
Figure 6.4-2d is simpler than Figure 6.4-2a. It is easier to write and solve the node equations representing Figure
6.4-2J than it is to write and solve the node equations representing Figure 6A-2a. Thevenin’s theorem assures us
that the voltage vO in Figure 6A-2d is the same as the voltage vO in Figure 6.4-2a.

Let us write node equations representing the circuit in Figure 6A-2d. First, notice that the node voltage vais
given by (using KVL)

Va = V! + Voc + Rti\

Because vi = 0 and N=0,

va —Vvac



Nodal Analysis of Circuits Containing Ideal Operational Amplifiers — ©

Example 6.4-3 Analysis of an Op Amp Circuit
Using Node Equations

Consider the circuit shown in Figure 6.4-3. Find
the value of the voltage measured by the
voltmeter.

Solution
Figure 6.4-4 shows the circuit from Figure 6.4-3
after replacing the voltmeter by an equivalent 275V
open circuit and labeling the voltage measured
by the voltmeter. We will analyze this circuit by
writing and solving node equations. The nodes of
the circuit are numbered in Figure 6.4-4. Let vt,
V2, v3, and v4 denote the node voltages at nodes 1,
2, 3, and 4, respectively. WM © 40 Kii
The output of this circuit is the voltage
measured by the voltmeter. The output voltage
is related to the node voltages by

FIGURE 6.4-3 The circuit considered in Example 6.4-3.

vm=v4- 0= V4

The inputs to this circuit are the voltage of
the voltage source and the currents of the current
sources. The voltage of the voltage source is
related to the node voltages at the nodes of the

FIGURE 6.4-4 The circuit from Figure 6.4-3 after replacing the
voltage source by

voltmeter by an open circuit and labeling the nodes. (Circled numbers
0-v3=275 = V3= -2.75V are node numbers.)
Apply KCL to node 2 to get
\BN\Q:0+GOX 10~6 v3- V2= 18V
30,000 '
Using v3= —2.75 V gives
V2= -455V
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The noninverting input of the op amp is connected to node 2. The node voltage at the inverting input of an
ideal op amp is equal to the node voltage at the noninverting input. The inverting input of the op amp is connected
to node 1. Consequently,

M=vVv2= -455V
Apply KCL to node 1to get
vi - v4

20 x 10-6 = 0 + v, —v4= 08V
40,000

Using vm= v4 and v\ = -4.55 V gives the value of the voltage measured by the voltmeter to be
vm—-4.55 - 0.8 = -5.35V

Example 6.4-4 Analysis of an Op Amp Circuit

Consider the circuit shown in Figure 6.4-5. Find 40 kQ 8 kU
the value of the voltage measured by the

voltmeter.

Solution

Figure 6.4-6 shows the circuit from Figure 6.4-5
after replacing the voltmeter by an equivalent
open circuit and labeling the voltage measured
by the voltmeter. We will analyze this circuit by
writing and solving node equations. Figure 6.4-6
show s the circuit after numbering the nodes. Let
Vi, v2, v3, and v4 denote the node voltages at nodes
1, 2, 3, and 4, respectively.
The input to this circuit is the voltage of the 40 kQ (3) 8 kQ

voltage source. This input is related to the node
voltages at the nodes of the voltage source by

0-v, =3.35 = vi=-3.35V
The output of this circuit is the voltage measured

by the voltmeter. The output voltage is related to
the node voltages by

vm=vd- 0= v4

The noninverting input ofthe op amp is connected to
the reference node. The node voltage at the inverting

input of an ideal op amp is equal to the node voltage FIGURE 6.4-6 The circuit from Figure 6.4-5 after replacing the
at the noninverting input. The inverting input of the voltmeter by an open circuit and labeling the nodes. (Circled
op amp is connected to node 2. Consequently, numbers are node numbers.)

v2=0V

Apply KCL to node 2 to get
VI- V2o V2~ \3

20,000 40,000 V3= Vi tevz = 2]
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Apply KCL to node 3 to get

=>5v4= —V2r 10vi= 10vi

40,000 ~ 10,000 8000
Combining these equations gives

V4 = 2v3 = —4vi

Using vm= v4 and vj = -3.35 V gives the value of the voltage measured by the voltmeter to be

vm= —4(—3.35) = 134V

6.5 DESIGN USING OPERATIONAL AMPLIFIERS

One of the early applications of operational amplifiers was to build circuits that performed mathematical
operations. Indeed, the operational amplifier takes its name from this important application. Many of the
operational amplifier circuits that perform mathematical operations are used so often that they have been
given names. These names are part of an electrical engineer’s vocabulary. Figure 6.5-1 shows several
standard operational amplifier circuits. The next several examples show how to use Figure 6.5-1 to design
simple operational amplifier circuits.

1

L[‘L[“ yn

(C) Voltage follower (buffer amplifier)

M - iKX+Kk24K3):

(d) Summing anplifier (e) Noninverting summing anplifier

+K2A2 +133)

*IGKRE 6.5-1 A brief catalog of operational amplifier e.rcuits. Note that all node voltages are referenced to the ground node.
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rT " *
o—AM y AN
1 viIr
‘o= D

(i) Voltage-controlled
current source (MOCS)

FIGURE 6.5-1 (Continued)

AAA— i
*3

_*1*3
=

r AAA— 1
r2

f/i) Negative resistance convertor

Example 6.5-1 Preventing Loading Using a Voltage Follower

This example illustrates the use of a voltage follower to prevent loading. The voltage follower is shown in Figure
6.5-Ic. Loading can occur when two circuits are connected. Consider Figure 6.5-2. In Figure 6.5-2a, the output of
circuit 1is the voltage va. In Figure 6.5-2b, circuit 2 is connected to circuit 1. The output of circuit 1is used as the
input to circuit 2. Unfortunately, connecting circuit 2 to circuit 1 can change the output of circuit 1. This is called
loading. Referring again to Figure 6.5-2, circuit 2 is said to load circuit 1if vb”~ va. The current Zis called the load
current. Circuit 1lisrequired to provide this current in Figure 6.5-2b but not in Figure 6.5-2a. This is the cause ofthe
loading. The load current can be eliminated using a voltage follower as shown in Figure 6.5-2c. The voltage
follower copies voltage va from the output of circuit 1 to the input of circuit 2 without disturbing circuit 1.

u=o0

Circuit Circuit
1 2

(a) (b)

(c)

FIGIRE 6.5-2 Circuit 1 (a) before and (b) after circuit 2 is connected, (c) Preventing loading, using a voltage follower.
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20K i 20kQ i
-0
+
60 kQ« l'a An 60 kQ. +30 kQ
| ~r
(a) (b) (©

FIGURE 6.5-3 A voltage divider (a) before and (b) after a 30-kQ resistor is added. (c) A voltage follower is added to prevent
loading.

Solution
As a specific example, consider Figure 6.5-3. The voltage divider shown in Figure 6.5-3<z can be analyzed by

writing a node equation at node 1

20,000 * 60,000

Solving for va, we have
3
V=4V
In Figure 6.5-36, a resistor is connected across the output of the voltage divider. This circuit can be analyzed
by writing a node equation at node 1
Vb - Vin Vb VWw = 0Q
20,00060,000 + 30,000

Solving for vb, we have

1
\b = “Vin

Because vb va, connecting the resistor directly to the voltage divider loads the voltage divider. This loading is
caused by the current required by the 30-kfl resistor. Without the voltage follower, the voltage divider must
provide this current.

In Figure 6.5-3c, a voltage follower is used to connect the 30-kfl resistor to the output of the voltage divider.
Once again, the circuit can be analyzed by writing a node equation at node L

-c~ Mn+ — =0
20,000 60,000

Solving for vc, we have
3
VC=-vm
Because vc = va, loading is avoided when the voltage follower is used to connect the resistor to the

voltage divider. The voltage follower, not the voltage divider, provides the current required by the 30-kfl
V resistor.
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Example 6.5-2 Amplifier Design

A common application of operational amplifiers is to scale a voltage, that is, to multiply a voltage by a constant, K,
so that

V0 = Kvij,

This situation is illustrated in Figure 6.5-4a. The input voltage, vin, is provided by an ideal voltage source. The
output voltage, vQ is the element voltage of a 100-kfl resistor.
Circuits that perform this operation are usually called amplifiers. The constant K is called the gain of the amplifier.
The required value of the constant K will determine which of the circuits is selectedfrom Figure 6.5-1.

There are four cases to consider: K <0, K> |, K =1,and 0 < K < 1
10 kft 50 kft
Operational ~wov
amplifier
circuit 100 k ft< "o 100 kti< ©0
@ (b)
"0
(c) (d) (e)

FIGURE 6.5-4 (a) An amplifier is required to make vO= Kv,,,. The choice of amplifier circuit depends on the value of the gain K.
Four cases are shown: (b) K = -5, (c)K = 5,(d) K = 1, and (e) K = 0.8.

Solution

Because resistor values are positive, the gain of the inverting amplifier, shown in Figure 6.5-la, is negative.

Accordingly, when K < 0 is required, an inverting amplifier is used. For example, suppose we require K= -5.
From Figure 6.5-1a,

R<
. -5 =
Ri
S0 Rf - 5R\
As a rule of thumb, it is a good idea to choose resistors in operational amplifier circuits that have values
between 5 kQ and 500 kQ when possible. Choosing
rt, = 10 kfl
gives R( = 50 kO

The resulting circuit is shown in Figure 6.5-46.
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Next, suppose we require A = 5. The noninverting amplifier, shown in Figure 6.5-16, is used to obtain gains
greater than |. From Figure 6.5-16

Rf
5= ,+ A7
S0 Rf —4R\

Choosing R\ = 10kft gives R, = 40kft. The resulting circuit is shown in Figure 6.5-4c.
Consider using the noninverting amplifier of Figure 6.5-16 to obtain a gain A = 1 From Figure 6.5-16,

Rf
1= 144
RI
=0
0 Ri

This can be accomplished by replacing Rf by a short circuit (Rf = 0) or by replacing /?, by an open circuit
(Ri = oc) or both. Doing both converts a noninverting amplifier into a voltage follower. The gain of the voltage
follower is 1 In Figure 6.5-4d, a voltage follower is used for the case K = 1

There is no amplifier in Figure 6.5-1 that has a gain between 0 and 1 Such a circuit can be obtained using a
voltage divider together with a voltage follower. Suppose we require A = 0.8. First, design a voltage divider to
have an attenuation equal to A:

0.8 = RI
R\ + Rj

S0 Ri =4 R\
Choosing R\ = 20 kft gives R2 = 80 kft. Adding a voltage follower gives the circuit shown in Figure 6.5-4e.

Example 6.5-3 Designing a Noninverting Summing Amplifier

Design a circuit having one output, vQ and three inputs, vu v2, and v3. The output must be related to the inputs by
VO = 2vi + 3v24-4v3
In addition, the inputs are restricted to having values between —1 V and 1V, that is,
M| < IV [* 123
Consider using an operational amplifier having /sst= 2 mA and vsat= 15 V and design the circuit.
Solution
The required circuit must multiply each input by a separate positive number and add the results. The noninverting
summer shown in Figure 6.5-le can do these operations. This circuit is represented by six parameters: K\%A\s A3,
A4, 73, and Rb. Designing the noninverting summer amounts to choosing values for these six parameters. Notice

that K{ + K2 4- K3 < 1is required to ensure that all of the resistors have positive values. Pick K4 = 10 (a
convenient value that is just a little larger than 2 + 3 4 4=29). Then,

VQ= 2vj -+ 3y24-4v3= 10(0.2vj -4 0.3v2 4- 0.4v3)

That is, A4 —10, Aj = 0.2, K2 —0.3, and A3 = 0.4. Figure 6.5-1¢? does not provide much guidance in picking
values of Raand Rb. Try = Rh= 100 ft. Then,

(A4- 1)?b= (10- 1)100 = 900ft
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Figure 6.5-5 shows the resulting circuit. Itis necessary to check this circuit vxo—sv(\)lo ? > -
to ensure that it satisfies the specifications. Writing node equations '
333 Q -
va- M tva- v2+ 7 \3 Vs 0 v2 ANV » 900q'n
500 333 250 1000 '
250 Q
- FEZA+— =0 8 0— 1 a6 i
900 100
1000 Q. 100q .
and solving these equations yield
1
= i -l- + 4y =
VO = 2vi-k3v2+avs and  va 10 FIGI RE 6.5-5 The proposed noninverting

) S summing amplifier.
The output current of the operational amplifier is given by

va- V0 VO (6.5-1)
oo — 97 500 Q
900 1000 vi o—V V\r Joa
How large can the output voltage be? We know that
333 Q n
NOL= [2vi + 3v2+ 4vs) V20—V A—o
< i| + + j| < 250 Q
S0 [VO| < 2|vi| + 3|v2| + 4|vj| < 9V V30— VW 1
The operational amplifier output voltage will always be less than 1000 0 -
Vsa. That’s good. Now what about the output current? Notice that '
[v0] < 9 V. From Eq. 6.5-1, 1.
VQ -V _ ImA FIGI RE 6.5-6 The final design of the
1000 n 100011 nomnvertmg summing amplifier.

The operational amplifier output current exceeds /A = 2 mA. This is not allowed. Increasing Rbwill reduce iQ Try
Rb= 1000 O. Then,

(K4- I)Rb = (10- 1)1000 = 9000n
This produces the circuit shown in Figure 6.5-6. Increasing Rdand Rbdoes not change the operational amplifier
output voltage. As before,
vG= 2vi + 3v2-f 4v3
and [vO| < 2|vi| + 3|v2|-f4ajvs; < 9V

Increasing Rb does reduce the operational amplifier output current. Now,
-9V
10,0000

= 0.9 mA

so |i'oal < 2mA and |v0| < 15V, as required.

66 OPERATIONAL AMPLIFIER CIRCUITS AND LINEAR
ALGEBRAIC EQUATIONS

This section describes a procedure for designing operational amplifier circuits to implement linear

algebraic equations. Some of thenodevoltages of the operational amplifier circuit will represent the
variables in the algebraic equation.For example, the equation
z=4x —5"+ 2 (6.6-1)

will be represented by an operational amplifier circuit that has node voltages vx, vy, and vz that are
related by the equation

vz = 4vx- 5w+ 2 (6.6-2)
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A voltage or current that is used to represent something is called a signal.

That ‘something’ could be a temperature or a position or a force or something else. In this case, v« vy,
and vz are signals representing the variables x, y, and z.

Equation 6.6-1 shows how the value ofz can be obtained from values ofx and>>. Similarly, Eq.
6.6-2 shows how the value of vz can be obtained from values of vxand vy. The operational amplifier
circuit will have one output, vz, and two inputs, vx and vy.

The design procedure has two steps. First, we represent the equation by a diagram called a block
diagram. Second, we implement each block of the block diagram as an operational amplifier circuit.

We will start with the algebraic equation. Equation 6.6-1 indicates that the value of variable .
can be calculated from the values of the variables x and>> using the operations of addition, subtraction,
and multiplication by a constant multiplier. Equation 6.6-1 can be rewritten as

z=4x+ (—b)y 42 (6.6-3)

Equation 6.6-3 indicates that z can be obtained from x andy using only addition and multiplication,
though one of the multipliers is now negative.

Figure 6.6-1 shows symbolic representations of the operations of addition
and multiplication by a constant. In Figure 6.6-1a, the operation of multiplication
by a constant multiplier is represented by a rectangle together with two arrows, one
pointing toward and one pointing away from the rectangle. The arrow pointing (a)
toward the rectangle is labeled by a variable representing the input to the operation,
that is, the variable that is to be multiplied by the constant. Similarly, the arrow

pointing away from the rectangle is labeled by a variable representing the output, or :j :

result, of the operation. The rectangle itself is labeled with the value of the om
multiplier. The symbol shown in Figure 6.6-16 represents the operation of addition.

The rectangle is labeled with a plus sign. The arrows that point toward the rectangle (b)

are labeled by the variables that are to be added. There are as many of these arrows  FIGURE 6.6-1 Symbolic
as there are variables to be added. One arrow points away from the rectangle. This  representations of (a) multiplication by
arrow is labeled by the variable representing the sum. a constant and (6) addition.

The rectangles that represent addition and multiplication by a constant are
called blocks. A diagram composed of such blocks is called a block diagram.

Figure 6.6-2 represents Eq. 6.6-3 as a block diagram. Each block in the block

diagram corresponds to an operation in the equation. Notice, in particular, that the

product 4x has two roles in Eq. 6.6-3. The product 4jc is both the output of one

operation, multiplying x by the constant 4, and one of the inputs to another

operation, adding 4x to —5y and 2 to obtain z. This observation is used to construct ~FIGURE 6.6-2 A block

the block diagram. The product 4x is the output of one block and the input to ~ diagram representing Eq. 6.6-3.
another. Indeed, this observation explains why the output of the block that

multiplies x by 4 is connected to an input of the block that adds 4x to -5y and 2.

Next, consider designing an operational amplifier circuit to implement the block diagram in
Figure 6.6-2. The blocks representing multiplication by a constant multiplier can be implemented
using either inverting or noninverting amplifiers, depending on the sign of the multiplier. To do so,
design the amplifier to have a gain that is equal to the multiplier of the corresponding block.
(Noninverting amplifiers can be used when the constant is both positive and greater than 1 Example
6.5-2 shows that a circuit consisting of a voltage divider and voltage follower can be used when the
constant is positive and less than 1.)

Figures 6.6-36,d f show operational amplifier circuits that implement the blocks shown in
Figures 6.6-3a,c,e, respectively. The block in Figure 6.6-3# requires multiplication by a positive
constant, 4. Figure 6.6-36 shows the corresponding operational amplifier circuit, a noninverting
amplifier having a gain equal to 4. This noninverting amplifier is designed by referring to Figure 6.5-16
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20 kft 60 kft 20 kft 100 kft
4i\
it -5
(€)
20 kft
4ixo—VW —
20 kft 0"z
5y 0 *
4vm 60 kit .
Sy m 20 kit
2 2V M /V\r~s
20 kft o 20 kft .
(e) (f)

FIGURE 6.6-3 (a), (c), and (e) show the blocks from Figure 6.6-2, whereas (6), (d), and (/") show the corresponding operational
amplifier circuits.

and setting
Rx= 20 kft and Rf = 3R{= 60kft

(A useful rule of thumb suggests selecting resistors for operational amplifier circuits to have
resistances in the range 5 kft to 500 kft.)
In Figure 6.6-3b, the notation vx—x indicates that vx is a voltage that represents x. A voltage or
current that is used to represent something else is called a signal, so vx is the signal representing x.
The block in Figure6.6-3c requires multiplication by a negative constant, —5. Figure 6.6-3d
shows the corresponding operational amplifier circuit, an inverting amplifier having a gain equal to
—b5. Design this inverting amplifier by referring to Figure 6.5-1a and setting

R\ = 20kft and Rf= 5R{= 100 kft

The block in Figure 6.6-3e requires adding three terms. Figure
6.6-3f shows the corresponding operational amplifier circuit, a
noninverting summer. Design the noninverting summer by referring
to Figure 6.6-4 and setting

Ri = 20kft, n=3, and nR = 3(20,000) = 60 kft
(The noninverting summer is a special case of the noninverting-
summing amplifier shown in Figure 6.5-le. Take K]=K2=K3=\/
(n -f 1), K4=n, Rb=R, and Ra= R/(n -f 1) in Figure 6.5-1¢ to get
the circuit shown in Figure 6.6-4.)

FIGURE 6.6-4 The noninverting summer. The FISure 6'6‘5 shows the circuit obtained by replacing each
integer n indicates the number of inputs to the block ,n FISure 66’2 by the corresponding operational amplifier
circuit. circuit from Figure 6.6-3. The circuit in Figure 6.6-5 does indeed

implement Eq. 6.6-3, but it’s possible to improve this circuit.

The constant input to the summer has been implemented using a 2-V voltage source. Although
correct, this may be more expensive than necessary. Voltage sources are relatively expensive
devices, considerably more expensive than resistors or operational amplifiers. We can reduce the
cost of this circuit by using a voltage source we already have instead of getting a new one. Recall
that we need power supplies to bias the operational amplifier. Suppose that +15-V voltage sources
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20 kQ 60 kQ
j —VW—

20 kQ 100 kQ »2 V
WO-- VW —F-
2V ~H 20kQ~"
FIGURE 6.6-6 Using the operational
FIGURE 6.6-5 An operational amplifier circuit that implements Eg. 6.6-2. amplifier power supply to obtain a 2-V signal.

are used to bias the operational amplifier. We can reduce costs by using the +15-V voltage source
together with a voltage divider and a voltage follower to obtain the 2-V input for the summer. Figure
6.6-6 illustrates the situation. The voltage divider produces a constant voltage equal to 2 V. The
voltage follower prevents loading (see Example 6.5-1).

Applying the voltage division rule in Figure 6.6-6 requires that

= 0.133 Ra= 6.5Rb
15

The solution to this equation is not unique. One solution isRa = 130 kO and Rb —20 kfl. Figure 6.6-7
shows the improved operational amplifier circuit. We can verify, perhaps by writing node equations,
that

vzZ= 4vx- 5wy + 2

Voltage saturation of the operational amplifiers should be considered when defining the relationship
between the signals vx, vy, and vz and the variables jc, y, and z. The output voltage of an operational

20 kQ 60 kQ

FIGURE 6.6-7 An improved
operational amplifier circuit that
implements Eq. 6.6-2.
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amplifier is restricted by |[vO| < v~t- Typically, is approximately equal to the magnitude of the
voltages ofthe power supplies used to bias the operational amplifier. That is, vsat is approximately 15V
when +15-V voltage sources are used to bias the operational amplifier. In Figure 6.6.7, vz, 4vx, and
-5vy are each output voltages of one of the operational amplifiers. Consequently,

=375V, |wy|< A «y =3V, and|v| < Vv*asl5V (6.6-4)

The simple encoding of x, v, and z by vx, vy, and vz is
VX=X, vw=y, and vz=1z (6.6-5)

This is convenient because, for example, vz= 4.5 V indicates that z = 4.5. However, using Eq. 6.6-3 to
replace vx, vy, and vz in Eq. 6.6-4 with x, y, and z gives
X\ < 3.75, W< 30, and |z < 15

Should these conditions be too restrictive, consider defining the relationship between the signals vx, vy,
and vz and the variables, x, y, and z differently. For example, suppose

= vV ='io’ and v = ~* (66°6)
Now we need to multiply thevalue of vzby 10 to get the value ofz.For example, vz= 4.5 V indicates
that z = 45. On the other hand, the circuit can accommodate larger values ofx,y, and z. Equations 6.6-4
and 6.6-6 imply that

X\ < 37.5, |yl < 30.0, and |z] < 150.0

EXERCISE 6.6-1 specify the values of R\ and R2in Figure E 6.6-1 that are required to cause v3
to be related to vx and v2 by the equation v3= (4)vi —(j)va.

Answer: R\ = 10 kO and R2= 2.5 kO

EXERCISE 6.6-2 specify the values of R\ and R2in Figure E 6.6-1 that are required to cause v3
to be related to M and v2 by the equation v3 = (6)vj — (f)v2

Answer: R\ = 20 kfi and R2 — 40 kfi
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6.7 CHARACTERISTICS OF PRACTICAL OPERATIONAL
AMPLIFIERS

The ideal operational amplifier is the simplest model of an operational amplifier. This simplicity is obtained

by ignoring some imperfections of practical operational amplifiers. This section considers some of these

imperfections and provides alternate operational amplifier models to account for these imperfections.
Consider the operational amplifier shown in Figure 6.7-la. If this operational amplifier is ideal,

then
/j=0, =0, and W—w =0 (6.7-1)

In contrast, the operational amplifier model shown in Figure 6.7-\d accounts for several nonideal
parameters of practical operational amplifiers, namely:

» Nonzero bias currents

» Nonzero input offset voltage

« Finite input resistance

* Nonzero output resistance

« Finite voltage gain

This model more accurately describes practical operational amplifiers than does the ideal operational
amplifier. Unfortunately, the more accurate model of Figure 6.1-\d is much more complicated and

© id)

FIGURE 6.7-1 (a) An operai\t.ional amplifier and {>) t.h‘_e W@_@E medel 8f an operational amplifier, (c) The finite gam
model of an operat.onal amplifier, (d) The offsets and finite gain fredel 8fan operational amplifier.
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much more difficult to use than the ideal operational amplifier. The models in Figures 6.7-16 and
6.7-Ic provide a compromise. These models are more accurate than the ideal operational amplifier but
easier to use than the model in Figure 6.1Ad. It will be convenient to have names for these models. The
model in Figure 6.7-16 will be called the offsets model of the operational amplifier. Similarly, the
model in Figure 6.7-lc will be called the finite gain model of the operational amplifier, and the model
in Figure 6.7-\d will be called the offsets and finite gain model of the operational amplifier.

The operational amplifier model shown in Figure 6.7-16 accounts for the nonzero bias current
and nonzero input offset voltage of practical operational amplifiers but not the finite input resistance,
the nonzero output resistance, or the finite voltage gain. This model consists of three independent
sources and an ideal operational amplifier. In contrast to the ideal operational amplifier, the
operational amplifier model that accounts for offsets is represented by the equations

i\ = *bi, == *2, and vX- V2= V0§ (6.7-2)

The voltage vos is a small, constant voltage called the input offset voltage. The currents ibl and 22 are
called the bias currents of the operational amplifier. They are small, constant currents. The difference
between the bias currents is called the input offset current, zos, of the amplifier:

*0s — *bl - *b2

Notice that when the bias currents and input offset voltage are all zero, Eq. 6.7-2 is the same as Eq. 6.7-
1 In other words, the offsets model reverts to the ideal operational amplifier when the bias currents and
input offset voltage are zero.

Frequently, the bias currents and input offset voltage can be ignored because they are very small.
However, when the input signal to a circuit is itself small, the bias currents and input voltage can
become important.

Manufacturers specify a maximum value for the bias currents, the input offset current, and the
input offset voltage. For the /iA741, the maximum bias current is specified to be 500 nA, the
maximum input offset current is specified to be 200 nA, and the maximum input offset voltage is
specified to be 5 mV. These specifications guarantee that

Ii| < 500 nA  and  |zb21< 500 nA
lzbi —*el< 200 nA
[vesl < 5 mV

Table 6.7-1 shows the bias currents, offset current, and input offset voltage typical of several types of
operational amplifier.

Selected Parameters of Typical Operational Amplifiers

PARAMETER UNITS JuA741 LF351 TLO51C OPAIOI AM OP-07E
Saturation voltage, \Y 13 135 132 13 13
Saturation current, z=t mA 2 15 6 30 6
Slew rate, SR VNS 0.5 13 23.7 6.5 0.17
Bias current, ib nA 80 0.05 0.03 0.012 1.2
Offset current, /os nA 20 0.025 0.025 0.003 0.5
Input offset voltage, vos mV 1 5 0.59 0.1 0.03
Input resistance, /2, Mn 2 106 106 106 50
Output resistance, RO n 75 1000 250 500 60
Differential gain, A VimV 200 100 105 178 5000
Common mode rejection ratio, CMRR V/mv 31.6 100 44 178 1413
Gain bandwidth product, B MHz 1 4 31 20 0.6
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Exampte 0.7-1 Offset Voltage and Bias Currents

The inverting amplifier shown in Figure 6.7-2a contains a ~A741 operational amplifier. This inverting amplifier
designed in Example 6.5-2 has a gain of -5, that is,

V0 = -5 evin

The design of the inverting amplifier is based on the ideal model of an operational amplifier and so did not account
for the bias currents and input offset voltage of the /iA741 operational amplifier. In this example, the offsets
model of an operational amplifier will be used to analyze the circuit. This analysis will tell us what effect the bias
currents and input offset voltage have on the performance of this circuit.

10 kQ 50 kQ
HWV AAIN
--5vr
(a) (b) (c)
10 kQ 50 kQ 10 kQ 10 kQ
—Wv t WV— —WV —WYV
Ir-sideal
vn=6 va v0=50 kQ «ibl Wh=0
(d) (e) (f)

FIGURE 6.7-2 (a) An inverting amplifier and (b) an equivalent circuit that accounts for the input offset voltage and bias currents of
the operational amplifier. (c)-(f) Analysis using superposition.

Solution

In Figure 6.7-26, the operational amplifier has been replaced by the offsets model of an operational amplifier.
Notice that the operational amplifier in Figure 6.7-26 is the ideal operational amplifier that is part of the model of
the operational amplifier used to account for the offsets. The circuit in Figure 6.7-26 contains four inputs that
correspond to the four independent sources, vin, /bl, /b2, and vos. (The input vin is obtained by connecting a voltage
source to the circuit. In contrast, the “inputs” ibl, /b2, and ves are the results of imperfections of the operational
amplifier. These inputs are part of the operational amplifier model and do not need to be added to the circuit.)
Superposition can be used to good advantage in analyzing this circuit. Figures 6.7-2c-6.7-2/illustrate this process.
In each of these figures, all but one input has been set to zero, and the output due to that one input has been
calculated.

Figure 6.7-2c shows the circuit used to calculate the response to vmalone. The other inputs, /bl, 202, and
vos, have all been set to zero. Recall that zero current sources act like open circuits and zero voltage sources
act like short circuits. Figure 6.7-2c is obtained from Figure 6.7-26 by replacing the current sources ibj, /b2 by
open circuits and by replacing the voltage source vos by a short circuit. The operational amplifier in Figure
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6.1-2c is the ideal operational amplifier that is part of the offsets model. Analysis ofthe inverting amplifier in
Figure 6.7-2c gives

Vo= -5 evin

Next, consider Figure 6.7-2d. This circuit is used to calculate the response to vos alone. The other inputs, v,n,
ibi, and ib2, have all been set to zero. Figure 6.7-2d is obtained from Figure 6.7-26 by replacing the current sources
ibl and ib2 by open circuits and by replacing the voltage source vin by a short circuit. Again, the operational
amplifier is the ideal operational amplifier from the offsets model. The circuit in Figure 6.7-2d is one we have seen
before; it is the noninverting amplifier (Figure 6.5-16). Analysis of this noninverting amplifier gives

/, 50kn\
vilv  Tokflj 've v

Next, consider Figure 6.1-2e. This circuit is used to calculate the response to ibx alone. The other inputs, vin,
vos, and 22, have all been set to zero. Figure 6.7-2e is obtained from Figure 6.7-26 by replacing the current source
22 by an open circuit and by replacing the voltage sources vin and vos by short circuits. Notice that the voltage
across the 10-kH resistor is zero because this resistor is connected between the input nodes ofthe ideal operational
amplifier. Ohm's law says that the current in the 10-kO resistor must be zero. The current in the
50-kfl resistor is al. Finally, paying attention to the reference directions,

vo = 50 kH «/bi
Figure 6.7-2/is used to calculate the response to 22 alone. The other inputs, vin, vos, and 21, have all been set
to zero. Figure 6.7-2/is obtained from Figure 6.7-26 by replacing the current source zl by an open circuit and by
replacing the voltage sources vin and vos by short circuits. Replacing vos by a short circuit inserts a short circuit

across the current source 2. Again, the voltage across the 10-kfl resistor is zero, so the current in the 10-kfl
resistor must be zero. Kirchhoffs current law shows that the current in the 50-kfl resistor is also zero. Finally,

VO = 0
The output caused by all four inputs working together is the sum of the outputs caused by each input
working alone. Therefore,
Vo = 5 e\n {6 *ves - (50 kKO)zbi

When the input of the inverting amplifier, vin, is zero, the output vGalso should be zero. However, vGis nonzero
when we have a finite vos or &bl. Let

output offset voltage = 6 «  + (50 kfl)zbi
Then vo = —5 «Mn + output offset voltage

Recall that when the operational amplifier is modeled as an ideal operational amplifier, analysis of this inverting
amplifier gives

VO = -5 evin

Comparing these last two equations shows that bias currents and input offset voltage cause the output offset
voltage. Modeling the operational amplifier as an ideal operational amplifier amounts to assuming that the output
offset voltage is not important and thus ignoring it. Using the operational amplifier model that accounts for offsets
is more accurate but also more complicated.

How large is the output offset voltage of this inverting amplifier? The input offset voltage of a fxA74\
operational amplifier will be at most 5 mV, and the bias current will be at most 500 nA, so

output offset voltage <6-5 mV + (50 kfi) 500 nA = 55 mV

We note that we can ignore the effect of the offset voltage only when |5 vin\ > 500 mV or |vin| > 100 mV. The

output offset error can be reduced by using a better operational amplifier, that is, one that guarantees smaller bias
currents and input offset voltage.
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Now, let us turn our attention to different parameters of practical operational amplifiers. The
operational amplifier model shown in Figure 6.7-1c accounts for the finite input resistance, the nonzero
output resistance, and the finite voltage gain of practical operational amplifiers but not the nonzero bias
current and nonzero input offset voltage. This model consists of two resistors and a VCVS.

The finite gain model reverts to an ideal operational amplifier when the gain. A, becomes infinite.
To see that this is so, notice that in Figure 6.7-Ic

v =A(y2- vi) + RQo
\o Roio
o) V2 — VI = e

The models in Figure 6.7-1, as well as the model of the ideal operational amplifier, are valid only when
vc and iQsatisfy Eq. 6.3-1. Therefore,
v@ < vt and \iQ< /sx

M I A \&t+ Rohax

Then Vj| < e

Therefore, lim (v2—v\)=0

Next, because

we conclude that

limfi=o0 and limz=o0
A—*00 A—0c

Thus, Zi, 2, and v2 - W satisfy Eq. 6.7-1. In other words, the finite gain model of the operational
amplifier reverts to the ideal operational amplifier as the gain becomes infinite. The gain for practical
op amps ranges from 100,000 to 107.

Example 6.7-2 Finite Gain

In Figure 6.7-3, a voltage follower is used as a buffer amplifier. Analysis based on the ideal operational amplifier
shows that the gain of the buffer amplifier is

=1

What effects will the input resistance, output resistance, and finite voltage gain of a practical operational amplifier
have on the performance of this circuit? To answer this question, replace the operational amplifier by the
operational amplifier model that accounts for finite voltage gain. This gives the circuit shown in Figure 6.7-3b.

FIGURE 6.7-3 (a) A voltage

follower used as a buffer amplifier

and (b) an equivalent circuit with

the operational amplifier model that
(b) accounts for finite voltage gain.
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Solution
To be specific, suppose R\ = 1kQ; = 10kft; and the parameters of the practical operational amplifier are
R, = 100 kft, Ro = 10011. and A = 105V/V.

Suppose that vo = 10V. We can find the current, iL in the output resistor as

L= ¥ 10V 1934
R1 104 ft

Apply KCL at the top node of /JL to get

\N+i0+i1 =0
It will turn out that iy will be much smaller than both iQand iL. It is useful to make the approximation that fi = 0.
(We will check this assumption later in this example.) Then,

i0=-k
Next, apply KVL to the mesh consisting of the VCVS, RO, and RL to get
-A(v2- vi)- iORO+ iLRL= 0

Combining the last two equations and solving for (V2 - vt) gives

_ »0-3(1Q 0+ »0.000) = ,.01 x ,0-4y
A 105
Now /] can be calculated using Ohm’s law:
, =N =z M L ~ = _1.0,K,<r>A
Ri 100 kfl

This justifies our earlier assumption that i\ is negligible compared with i0 and z..
Applying KVL to the outside loop gives

vs- DRI - DRI+ vo=0
Now, let us do some algebra to determine vs:
vs —v0 —i1(R\ -f R\) —v0 4- 2("1 +

= V0 H--—-—-- — X (R\ 4-R{)
~

A
s JROERD R+ )
4 X R>
(Ro+R1) (*i+*0
ve+ R1 X A Ri
The gain of this circuit is
A R1 Ri

This equation shows that the gain will be approximately | when A is very large, RQ<C R1*and R\ Rv In this
example, for the specified A, RO, and R{ we have

V0 |
= 0.99999
| . 100 4- 10,000 105 4-1000 1.00001

X — [

105 10,000 los

Thus, the input resistance, output resistance, and voltage gain of the practical operational amplifier have only a
small, essentially negligible, combined effect on the performance of the buffer amplifier.
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Table 6.7-1 lists two other parameters of practical operational amplifiers that have not yet
been mentioned. They are the common mode rejection ratio (CMRR) and the gain bandwidth
product. Consider first the common mode rejection ratio. In the finite gain model, the voltage of the

dependent source is

A(v2- Vi)
In practice, we find that dependent source voltage is more accurately expressed as
/ VI 4-v2\
A(V2-vVvpD -Mem( - 2= )
where vi —V is called the differential input voltage.
vi + w2

is called the common mode input voltage.

and Aanis called the common mode gain.

The gain A is sometimes called the differential gain to distinguish it from Acm. The common mode
rejection ratio is defined to be the ratio of A to Aom

CMRR = ~
cm
The dependent source voltage can be expressed using A and CMRR as
. ) M+
A(v2 - Vi) - McemVE t-V2- = ~A(v2 - Vi) + CMRR
l .
¥ 2 cMRR v

CMRR can be added to the finite gain model by changing the voltage of the dependent source. The
appropriate change is

1

lace A(V2- Vj) b '
replace A(v2 - vj) by 2CMRR)\2 0 ZCMRr)VI

This change will make the model more accurate but also more complicated. Table 6.7-1 shows
that CMRR s typically very large. For example, a typical LF351 operational amplifier has A = 100W
mV and CMRR= 100 V/mV. This means that

(1+2CMRNv (' 2CMAR) Vi 100.000.5v2 - 99.999.5vi

compared to A(v2 - viy = 100,000v; 100,000V,

In most cases, negligible error is caused by ignoring the CMRR of the operational amplifier. The
CMRR does not need to be considered unless accurate measurements of very small differential
voltages must be made in the presence of very large common mode voltages.

Next, we consider the gain bandwidth product ofthe operational amplifier. The finite gain model
indicates that the gain, A, of the operational amplifier is a constant. Suppose

vi=0 and v2= M sincat
80 " at V2 —Vvi —M sin oot
The voltage of the dependent source in the finite gain model will be

A(v2 —Vj) = A *M sin cat
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The amplitude, A M, of this sinusoidal voltage does not depend on the frequency, co. Practical
operational amplifiers do not work this way. The gain of a practical amplifier is a function of
frequency, say A(co). For many practical amplifiers, A(co) can be adequately represented as

It is not necessary to know now how this function behaves. Functions of this sort will be discussed in
Chapter 13. For now, it is enough to realize that the parameter B is used to describe the dependence of
the operational amplifier gain on frequency. The parameter B is called the gain bandwidth product of
the operational amplifier.

EXERCISE 6.7-1 The input offset voltage of a typical ixA14\ operational amplifier is 1 mV,
and the bias current is 80 nA. Suppose the operational amplifier in Figure 6.7-2a is a typical /iA14\.
Show that the output offset voltage of the inverting amplifier will be at most 10 mV.

EXERCISE 6.7-2 Suppose the 10-kfi resistor in Figure 6.1-2a is changed to 2 kfl and the 50-kfi
resistor is changed to 10k fl (These changes will not change the gain ofthe inverting amplifier. It will still
be —5.) Show that the maximum output offset voltage is reduced to 35 mV. (Use zb = 500 nA and vos= 5
mV to calculate the maximum output offset voltage that could be caused by the /xA741 amplifier.)

EXERCISE 6.7-3 Suppose the /xA741 operational amplifier in Figure 6.1-2a is
replaced with a typical OPA101AM operational amplifier. Show that the output offset
voltage of the inverting amplifier will be at most 0.6 mV.

EXERCISE 6.7-4

a. Determine the voltage ratio vo/vs for the op amp circuit shown in Figure E 6.7-4.

b. Calculate vQvs for a practical op amp with A = 105, /20= 100 fi, and R\ = 500 kfi.
The circuit resistors are Rs = 10 kfi, Rf = 50 kfi, and /?a = 25 kfi.

Answer: (b) v@vs= —2

6.8 ANALYSIS OF OP AMP CIRCUITS
USING MATLAB

Figure 6.8-1 shows an inverting amplifier. Model the operational amplifier as an ideal op amp. Then
the output voltage of the inverting amplifier is related to the input voltage by

= ~ 7 vs(0 (6.8-1)

Suppose that /?, = 2 kfi, R2= 50kfi, and vs= -4 cos
(2000 ret) V. Using these values in Eq. 6.8-1 gives v(t) =
100 co0s(20007r0 V. This is not a practical answer. It’s likely
that the operational amplifier saturates, and, therefore, the ideal
op amp is not an appropriate model of the operational amplifier.
When voltage saturation is included in the model of the
operational amplifier, the inverting amplifier is described by
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Ri
vsa when R\ Vs(0 N Vst
@ when - Vet RE-/A (6.8-2)
V<<(0= < - < < vsat
~Jh Al
“ \gt when ~s(0 N Vet
where vsat denotes the saturation voltage of the operational am plifier. Equation 6.8-2 is a more

accurate, but more com plicated, model ofthe inverting am plifier than Eq. 6.8-1. O fcourse, we prefer

the sim pler m odel, and we use the more com plicated m odel only when we have reason to believe that

answers based on the sim pler model are not accurate
Figures 6.8-2 and 6.8-3 illustrate the use ofM ATLAB to analyze the inverting am plifier when the

operational am plifier model includes voltage saturation. Figure 6.8-2 shows the M ATLAB input file, and

Figure 6.8-3 shows the resulting plot of the input and output voltages of the inverting am plifier

% Saturate.m simulates op amp voltage saturation
0,

(v}

%) Enter values of the parameters that describe the circuit.

(]

% circuit parameters

R1=2e3; % resistance, ohms
R2=50e3; % resistance, ohms
R3=20e3; % resistance, ohms

% op amp parameter

vsat=15; % saturation voltage, V
% source parameters

M=4; % amplitude, V

£=1000; % frequency, Hz

w=2*pi*f; % frequency, rad/s

theta= (pi/180)*180; rad

0/
0

% phase angle,

% Divide the time interval (0, tf) into N increments

% final time
% number of
% time, s

tf=2/f;
N=200;
t=0:tf/N:tf;
0

incerments

0

g//g at each time t=k*(tf/N) , calculate vo from vs

vs = M*cos (w*t+ theta) ; % input voltage

for k=1:length (vs)

if (- (R2/R1) *vs (k) < -vsat) vo(k) = -vsat;% -----——-
elseif (- (R2/R1)*vs (k) > vsat) vo(k) = vsat; % eqn.
else vo(k) = - (R2/R1)*vs(k); %6.8-2
end % ———————-
end
0,

6

% Plot Vo and vs versus t
v

plot(t, vo,

) t, vs% % plot the transfer characteristic
axis ([0 tf -20 20])

FIGURE 6.8-2 MATLAB

xlabel("time, s%)
\"ylabel (Cvo (t), V")

input file corresponding to
the circuit shown in Figure
6.8-1.
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6.9 USING PSPICE TO ANALYZE OP AMP CIRCUITS

Consider an op amp circuit having one input, vio and one output, vG Let’s plot the output voltage as a
function of the input voltage using PSpice. We need to do the following:

1. Draw the circuit in the OrCAD Capture workspace.

2. Specify a DC Sweep simulation.

3. Run the simulation.

4. Plot the simulation results.

The DC Sweep simulation provides a way to vary the input ofa circuit and then plot the output as
a function of the input.

Example 6.9-1 Using PSpice to Analyze an Op Amp Circuit

The input to the circuit shown in Figure 6.9-1 is the voltage source L (N>
voltage, vj. The response is the voltage, vG Use PSpice to plot the output R=2kEir -
voltage as a function of the input voltage. —VW—
R2=198 kQ
Solution :-40.816 mV

We begin by drawing the circuit in the OrCAD workspace as shown in

Figure 6.9-2 (see Appendix A). The op amp in Figure 6.9-2 is represented

by the PSpice part named OPAMP from the ANALOG library. The circuit FIGURE 6.9-1 The circuit considered in
output is a node voltage. It’s convenient to give the output voltage a EXample 6.9-1.

PSpice name. In Figure 6.9-2, a PSpice part called an off-page connector is used to label the output node as “o0.”
Labeling the output node in this way gives the circuit output the PSpice name, V(0).

We will perform a DC Sweep simulation. (Select PSpiceVNew Simulation Profile from the OrCAD Capture menu
bar, then DC Sweep from the Analysis Type drop-down list. Specify the Sweep variable to be the input voltage by
selecting Voltage Source and identifying the voltage source as Vi. Specify a linear sweep and the desired range of input
voltages.) Select PSpice\Run Simulation Profile from the OrCAD Capture menu bar to ran the simulation.

After a successful DC Sweep simulation, OrCAD Capture will automatically open a Schematics window.
Select Trace/Add Trace from the Schematics menus to pop up the Add Traces dialog box. Select V(o) from the
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FIGURE 6.9-2 The circuit of Figure 6.9-1 as ov(o)
drawn in the OrCAD workspace.
FIGURE 6.9-3 The plot of the output voltage as a function of the input voltage.

Simulation Output Variables list. Close the Add Traces dialog box. Figure 6.9-3 shows the resulting plot after
removing the grid and labeling some points. The plot is a straight line. Consequently, the circuit output is related
to the circuit input by an equation of the form

Vo= mvj+ b

where the values ofthe slope m and intercept b can be determined from the points labeled in Figure 6.9-3. In particular,
\Y%
50
0.100-0.050

and 1.9999 = 59.996(0) + b = b= 1.9999 «2V
The circuit output is related to the circuit input by the equation

vo = 50vj + 2

610 HOWCANWECHECK ...7?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For
example, proposed solutions to design problems must be checked to confirm that all of the
specifications have been satisfied. In addition, computer output must be reviewed to guard against
data-entry errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example,
occasionally just a little time remains at the end of an exam. It is useful to be able to quickly identify

those solutions that need more work.

The following example illustrates techniques useful for checking the solutions of the sort of
problems discussed in this chapter.

Example 6.10-1 How Can We Check Op Amp Circuits?

The circuit in Figure 6.10-1a was analyzed by writing and solving the following set of simultaneous equations

10h= va
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- \g + 5 i2 =0 i3 =0 wv4 :=0 i5 = 0 ve :=0&l
-AAAYIi— VW —i .
10 kQ 10 kQ Given
10 +i5 v4
10
2 5k 10 kQ 3% 5 ei2 + 10 « i3 20 + i3 * ve
AAA— 1
cova - 0.6
. 20 kQ 0.6
vi=3Vv Find (i2, i3, v4, i5, v6) -12
1.2
12 .J
@ (b)

FIGURE 6.10-1 (a) An example circuit and (b) computer analysis using Mathcad.

3= 5/2 *ml0/3
20/3 = V6

(These equations use units of volts, milliamps, and kohms.) A computer and the program Mathcad were used to
solve these equations as shown in Figure 6.10-16. The solution of these equations indicates that
i2= —0.6 mA, =06mA, wv4=-12 V,
is= —1.2mA, and = 12V
How can we check that these voltage and current values are correct?

Solution
Consider the voltage v3. Using Ohm’s law,

v3 = 20/3 = 20(0.6) = 12V
Remember that resistances are in kfi and currents in milliamps. Applying KVL to the mesh consisting of the
voltage source and the 5-kfl and 20-kfl resistors gives

v3*=3- 52 =3- 5(—0.6) =56V
Clearly, v3 cannot be both 12 and 6, so the values obtained for i2, /3, v4, 25, and v6 cannot all be correct. Checking
the simultaneous equations, we find that a resistor value has been entered incorrectly. The KVL equation
corresponding to the mesh consisting of the voltage source and the 5-kfl and 20-kfl resistors should be
3= 52 + 20/3
Note that 10/3was incorrectly used in the fourth line oftheMathcad program of Figure 6.10-1. After making this
correction, 2, 23v4, /5 and veare calculated to be
i2= —0.2mA, z=02mA, vi= —4YV,
5=04mA, and ve= 4V

Now v3 = 20/3 = 20(0.2) = 4
and v3=3-52=3- 5(—0.2)=4
This agreement suggests that the new values of/2, /8, v4, i5, and v6 are correct. As an additional check, consider v5.
First, Ohm’s law gives

vs = 10/5 = 10(—0.4) = -4
Next, applying KVL to the loop consisting of the two 10-kfl resistors and the input ofthe operational amplifier gives

Vb=0-fva=0+ (-4) = -4

This increases our confidence that the new values of 22, /3, v4, i5, and vé are correct.



Design Example--—-- ( 239

—| 6.11 DESIGN EXAMPLE |-

TRANSDUCER INTERFACE CIRCUIT

A customer wants to automate a pressure measurement, which requires converting the output
of the pressure transducer to a computer input. This conversion can be done using a standard
integrated circuit called an analog-to-digital converter (ADC). The ADC requires an input
voltage between 0 V and 10 V, whereas the pressure transducer output varies between —250
mV and 250 mV. Design a circuit to interface the pressure transducer with the ADC. That is,
design a circuit that translates the range —250 mV to 250 mV to the range 0 V to 10 V.

Describe the Situation and the Assumptions
The situation is shown in Figure 6.11-1.

FIGURE 6.11-1 Interfacing a pressure transducer with an analog-to-digital converter (ADC).
The specifications state that
250MV<y\ <2V
OV<v <OV
A simple relationship between v2 and vj is needed so that information about the pressure is not
obscured. Consider
W=a W+b

The coefficients, a and 6, can be calculated by requiring that v2 = 0 when vj = -250 mV and
that v2= 10 V when v, = 250 mV, that is,

0 V= a(—250mV) §-b
10V =a (250 mV) + ft

Solving these simultaneous equations gives a=20 V/V and b=5 V.

State the Goal

Design a circuit having input voltage v, and output voltage v2. These voltages should be
related by

V2= 20V, +5V (6.11-1)

Generate a Plan

Figure 6.11-2 shows a plan (or a structure) for designing the interface circuit. The operational
amplifiers are biased using + 15-V and -15-V power supplies. The constant 5-V input is
generated from the 15-V power supply by multiplying by a gain of 1/3. The input voltage, vu

isbm_ulti\%lied by a gain of 20. The summer (adder) adds the outputs of the two amplifiers to
obtain v2.
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12 = 20M + 5V

15V

FIGURE 6.11-2 A structure (or plan) for the interface circuit.

Each block in Figure 6.11-2 will be implemented using an operational amplifier
circuit.

Act on the Plan

Figure 6.11-3 shows one proposed interface circuit. Some adjustments have been made
to the plan. The summer is implemented using the inverting summing amplifier from
Figure 6.5-1d. The inputs to this inverting summing amplifier must be —20vj and —5 V
instead of 20vi and 5 V. Consequently, an inverting amplifier is used to multiply V] by
—20. A voltage follower prevents the summing amplifier from loading the voltage
divider. To make the signs work out correctly, the —15-V power supply provides the
input to the voltage divider.

Inverting amplifier

2.5 kft 50 kft
wo—Wv— — VA—
"1 10 kft 10 kft
X i -201;! -AMr- -0i2=20Vvi +5V
10 kft
-5 Vo—VVi\r
10 kft ) -
A5V 0-AW Summing amplifier
Voltage
divider

FIGURE 6.11-3 One implementation of the interface circuit.

The circuit shown in Figure 6.11-3 is not the only circuit that solves this design
challenge. There are several circuits that implement

V= 20vi + 5V

We will be satisfied with having found one circuit that does the job.

Verify the Proposed Solution

The circuit shown in Figure 6.11 -3 was simulated using PSpice. The result ofthis simulation is
the plot of the v2 versus vishown in Figure 6.11-4. Because this plot shows a straight line, v2 is
related to vj by the equation of a straight line

v2= mvi-fb



the circuit shown in Figure 6.11-3.

where m is the slope of the line and b is the intercept of the line with the vertical axis. Two
points on the line have been labeled to show that v2= 10.002 V when v\ = 0.250 V and that

V2= 0.0047506 V whenvi =
these points. The slope is given by

10.002 - (0.0047506)

0.250 - (-0.250)
The intercept is given by
b = 10.002 -
Thus,

v2 = 19.994V! + 5.003

19.994 x 0.0250 -

-0.250 V. The slope, w, and intercept, 6, can be calculated from

19.994

5.003

(6.11-2)

Comparing Egs. 6.11-1 and 6.11-2 verifies that the proposed solution is indeed correct.

6.12 SUMMARY

o

Several models are available for operational amplifiers.
Simple models are easy to use. Accurate models are
more complicated. The simplest model of the operational
amplifier is the ideal operational amplifier.

The currents into the input terminals of an ideal operational
amplifier are zero, and the voltages at the input nodes of an
ideal operational amplifier are equal.

It is convenient to use node equations to analyze circuits that
contain ideal operational amplifiers.

Operational amplifiers are used to build circuits that perform
mathematical operations. Many of these circuits have been
used so often that they have been given names. The inverting
amplifier gives a response of the form vo = -Kvxwhere K is
a positive constant. The noninverting amplifier gives a
response of the form vo = Kvxwhere K is a positive constant.

O

Another useful operational amplifier circuit is the noninvert-
ing amplifier with a gain of K = 1, often called a voltage
follower or buffer. The output of the voltage follower
faithfully follows the input voltage. The voltage follower
reduces loading by isolating its output terminal from its
input terminal.

Figure 6.5-1 is acatalog of some frequently used operational
amplifier circuits.

Practical operational amplifiers have properties that are not
included in the ideal operational amplifier. These include the
input offset voltage, bias current, dc gain, input resistance,
and output resistance. More complicated models are needed
to account for these properties.

PSpice can be used to reduce the drudgery of analyzing
operational amplifier circuits with complicated models.
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PROBLEMS

Section 6.3 The Ideal Operational Amplifier

P 6.3-1 Determine the value of voltage measured by the

voltmeter in Figure P 6.3-1.
Answer: -4V
20 kit

Figure P 6.3-1

P 6.3-2 Find vo and i0 for the circuit of Figure P 6.3-2.

3k 4kQ

Figure P 6.3-2

P 6.3-3 Find vGand iQfor the circuit of Figure P 6.3-3.

Answer: v0 = -30 V and iG= 3.5 mA

4 kQ 8 kQ

Figure P 6.3-3

P 6.3-4 Find v and i for the circuit of Figure P 6.3-4.

10 kQ

Figure P 6.3-4

P 6.3-5 Find vQand iQfor the circuit of Figure P 6.3-5.

Answer: vc = -15 Vand io= 7.5 mA
3 kQ

4kQ
—VW c m

12V( +) 2mAQ)

t

Figure P 6.3-5

P 6.3-6 Determine the value of voltage measured by the
voltmeter in Figure P 6.3-6.

Answer: 7.5V

Figure P 6.3-6

P 6.3-7 Find vQand io for the circuit of Figure P 6.3-7.
Rx R2
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P 6.3-8 Determine the current ia for the circuit shown in
Figure P 6.3-8.
Answer: i0= 2.5 mA

Figure P 6.3-11

P 6.3-12 The input to the circuit shown in Figure P 6.3-12 is
the voltage vs. The output is the voltage vQ The output is
related to the input by the equation vQ= mvs + b where m and
b are constants. Determine the values of m and b.

5kQ 20 kQ

Figure P 6.3-8

P 6.3-9 Determine the voltage vo for the circuit shown in  Figure P 6.3-12

Figure P 6.3-9. P6.3-13 The output of the circuit shown in Figure P 6.3-13 is

Answer: vQ= -8 V Vo = 3.5 V. Determine the value of (a) the resistance R, (b) the
power supplied be each independent source, and (c) the power,
Poa = *a x vo supplied by the op amp.

Figure P 6.3-9

P 6.3-10 The circuit shown in Figure P 6.3-10 has one input,
and one output, vD Show that the output is proportional to
the input. Design the circuit so that the gain is ~ = 20 Figure P 6.3-13

P 6.3-14 Determine the node voltages at nodes a, b, ¢. and d
of the circuit shown in Figure P 6.3-14.

Figure P 6.3-10

P 6,3-11 The circuit shown in Figure P 6.3-11 has one input,
vs, and one output, V0. Show that the output is proportional to
the input. Design the circuit so that vQ= 5 vs.
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P 6.3-15 Determine the node voltages at nodes a, b, ¢, and d
of the circuit shown in Figure P 6.3-15.

Section 6.4 Nodal Analysis of Circuits Containing
Ideal Operational Amplifiers

P 6.4-1 Determine the node voltages for the circuit shown in
Figure P 6.4-1.

Answer: va= 2V, w= -0.25V, vc= -5V, vd=-25V,
andve = -0.25V

Figure P 6.4-1

P 6.4-2 Find wvo and iQfor the circuit of Figure P 6.4-2.
Answer: vo = -4V and iQ= 1.33 mA

Figure P 6.4-2

P 6.4-3 IfR|=4.8 kfl and R2~R 4 = 30kll, find vo/vs for
the circuit shown in Figure P 6.4-3 when /23 = 1KII.

Answer: v@vs= —200
R2 rd

P 6.4-4 The output ofthe circuit shown in Figure P 6.4-4 is vG
The inputs are \f and v2. Express the output as a function of the
inputs and the resistor resistances.

Figure P 6.4-4

P 6.4-5 The outputs of the circuit shown in Figure P 6.4-5 are
vGand i0. The inputs are vj and v2. Express the outputs as
functions of the inputs and the resistor resistances.



P 6.4-6 Determine the node voltages for the circuit shown in

Figure P 6.4-6.

Answer: va= -0.75V, =0V,andwvc= -0.9375V

10 kQ
AAV

15 kQ

Figure P 6.4-6

P 6.4-7 Find vGand iQfor the circuit shown in Figure P 6.4-7.

10 kQ
30 kQ

10 kQ

Figure P 6.4-7

P6.4-8 Find vQand iQfor the circuit shown in Figure P 6.4-8.

10 kQ 20 kQ
—VW—| -MA— —°
10 kQ

Figure P 6.4-8

P 6.4-9 Determine the node voltages for the circuit shown in
Figure P 6.4-9.
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Answer: va= -12 V, vb= -4V, vc- -4V, vd- -4V

=-32V,vf=-48V,andwg= -3.2V

P 6.4-10 The circuit shown in Figure P 6.4-10 includes a
simple strain gauge. The resistor R changes its value by \R
when it is twisted or bent. Derive a relation for the voltage gain
v@vsand show that it is proportional to the fractional change
in /2, namely, AR/RO.

Ro AR
RO+ R\ Ro

Answer: vG=

R—Rn+ AR

Figure P 6.4-10 A strain gauge circuit.

P 6.4-11 Find w for the circuit shown in Figure P 6.4-11.

Figure P 6.4-11

P 6.4-12 The circuit shown in Figure P 6.4-12 has one output,
V0, and two inputs, v, and v2. Show that when ~ the
output is proportional to the difference of the inputs, W —\f.
Specify resistance values to cause vo = 5 (vi - V2).
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Figure P 6.4-12

P 6.4-13 The circuit shown in Figure P 6.4-13 has one output,
v, and one input, . Show that the output is proportional to the
input. Specify resistance values to cause vD= 20vj.

Figure P 6.4-13

P 6.4-14 The circuit shown in Figure P 6.4-14 has one input,
vs, and one output, vQ Show that the output is proportional to
the input. Design the circuit so that vo = 20vs.

P 6.4-15 The circuit shown in Figure P 6.4-15 has one input,
vs, and one output, v0. The circuit contains seven resistors
having equal resistance, R. Express the gain of the circuit,
\Vohs, in terms of the resistance R.

Figure P 6.4-15

P 6.4-16 The circuit shown in Figure P 6.4-16 has one input,
vs, and one output, V0. Express the gain, v@vs, in terms of the
resistances R2, /723, Ra* and R5. Design the circuit so that
b= -20 s

Figure P 6.4-16

P 6.4-17 The circuit shown in Figure P 6.4-17 has one input,
vs, and one output, vc. Express the gain of the circuit, v@vs, in
terms of the resistances R\,R 2i R3, #4, R5, and R*. Design the
circuit so that vo= —20vs.

Figure P 6.4-17

P 6.4-18 The circuit shown in Figure P 6.4-18 has one
input, vs, and one output, 2. Express the gain of the circuit,
1o/vs, in terms of the resistances R1, R2, Ri, and RO. (This
circuit contains a pair of resistors having resistance R\ and
another pair having resistance R2.) Design the circuit so that
ia= 0.02vs.



Figure P 6.4-18

P 6.4-19 The circuit shown in Figure P 6.4-19 has one input,
vs, and one output, vG The circuit contains one unspecified
resistance, R.

(a) Express the gain of the circuit, v@vs, in terms of the
resistance R.

(b) Determine the range of values of the gain that can be
obtained by specifying a value for the resistance R.

(c) Design the circuit so that vO= —3vs.

P 6.4-20 The circuit shown in Figure P 6.4-20 has one input,
vs, and one output, V0. The circuit contains one unspecified
resistance, R.

(a) Express the gain of the circuit, vDvs, in terms of the
resistance R.

(b) Determine the range of values of the gain that can be
obtained by specifying a value for the resistance R.

(c) Design the circuit so that vD= ~5vs.

Problems — ( 247

P 6.4-21 The circuit shown in Figure P 6.4-21 has three
inputs: vIf v2, and v3. The output of the circuit is vG The output
is related to the inputs by

vo = tfvi + bv2+ cvs
where a, b, and ¢ are constants. Determine the values of a, b,
and C.

20 kfl 20 kft 40 kQ

P 6.4-22 The circuit shown in Figure P 6.4-22 has two inputs:
M and v2. The output of the circuit is vG The output is related to
the inputs by

v = avi + bv2

where a and b are constants. Determine the values of a and b.
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20 kQ

Figure P 6.4-22

P 6.4-23 The input to the circuit shown in Figure P 6.4-23
is the voltage source voltage vs. The output is the node
voltage vo The output is related to the input by the equation

v = kvswhere k ZQ is called the gain of the circuit.

Determine the value of the gain k.

Figure P 6.4-23

P 6.4-24 The input to the circuit shown in Figure P 6.4-24 is
the current source current . The output is the node voltage vG
The output is related to the input by the equation vVQ= mis+ b
where m and b are constants. Determine the values of m and b.

50 kQ 25 kQ

Figure P 6.4-24

P 6.4-25 The input to the circuit shown in Figure P 6.4-25 is the
node voltage vs. The output is the node voltage vD The output is
related to the input by the equation vQ= kvswhere k = — is

Vs
called the gain of the circuit. Determine the value of the gain k.

50 kQ

Figure P 6.4-25

P 6.4-26 The values of the node voltages vb v2, and vGin
Figure P6.4-26are = 6.25V,w2 = 3.75V,andw = -15 V.
Determine the value of the resistances R\, R2, and R$.

20 kQ R,

v2

Figure P 6.4-26

P 6.4-27 The input to the circuit shown in Figure P 6.4-27 is
the voltage source voltage, v The output is the node voltage,
V0. The output is related to the input by the equation vQ= kvj

where k = —is called the gain of the circuit. Determine the
Vi
value of the gain k.
24 kQ

Figure P 6.4-27



Section 6.5 Design Using Operational Amplifiers

P 6.5-1 Design the operational amplifier circuit in Figure
P 6.5-1 so that

vout — r ' lir

where
r= Zo;nA
Operational
amplifier 20 kQ> vat
circuit
Figure P 6.5-1

P 6.5-2 Design the operational amplifier circuit in Figure
P 6.5-2 so that

*out — g ' vin

where

| zout

Figure P 6.5-2

P 6.5-3 Design the operational amplifier circuit in Figure
P 6.5-3 so that

VW = 5evi + 2 o2

Figure P 6.5-3

P 6.5-4 Design the operational amplifier circuit in Figure
P 6.5-3 so that

vout 35 5 ¢ (Vi —Vv2)
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P 6.5-5 Design the operational amplifier circuit in Figure
P 6.5-3 so that

V0L = 5ev) - 2ev2
P 6.5-6 The voltage divider shown in Figure P 6.5-6 has a
gain of
vout -10 Kfi

A~ -s5kn+ (-iokn)

Design an operational amplifier circuit to implement the
—10-kfl resistor.

5kQ

Figure P 6.5-6 A circuit with a negative resistor.
P 6.5-7 Design the operational amplifier circuit in Figure
P 6.5-7 so that

in=0 and vat= 3-evin

P 6.5-8 Design an operational amplifier circuit with output
Vo= 6 vi + 2 v2, where v, and v2 are input voltages.

P 6.5-9 Determine the voltage vGfor the circuit shown in
Figure P 6.5-9.

Hint: Use superposition.
Answer: vG= (—3)(3) + (4)(-4) + (H(B)=T7V

8 kQ 24 kQ

Figure P 6.5-9
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P 6.5-10 For the op amp circuit shown in Figure P 6.5-10,
find and list all the possible voltage gains that can be achieved
by connecting the resistor terminals to either the input or the
output voltage terminals.

Figure P 6.5-10 Resistances in kfl.

P 6.5-11 The circuit shown in Figure P 6.5-11 is called a
Howland current source. It has one input, vin, and one output,
out. Show that when the resistances are chosen so that
R2R3=R\Ra, the output is related to the input by the equation

‘ad ~ /2,

Figure P 6.5-11

P 6.5-12 The circuit shown in Figure P 6.5-12 is used to
calculate the output resistance of the Howland current source.
It has one input, it, and one output, vt. The output resistance,
RO, is given by

Express the output resistance ofthe Howland current source in
terms of the resistances R\, R2, R3, and R4.

P 6.5-13 The input to the circuit shown in Figure P 6.5-13a is
the voltage vs. The output is the voltage vc. The voltage Vb is
used to adjust the relationship between the input and output.

(a) Show that the output of this circuit is related to the input by
the equation

VO = avs+ b

where a and b are constants that depend on R1, R2, R* R4,
R5, and vb.

(b) Design the circuit so that its input and output have the
relationship specified by the graph shown in Figure
P 6.5-136.

Vo, V

Figure P 6.5-13

P 6.5-14 The input to the circuit shown in Figure P 6.5-\4a is
the voltage vs. The output is the voltage vD The voltage vb is
used to adjust the relationship between the input and output.

(a) Show that the output ofthis circuit is related to the input by
the equation

VW= avs+ b

where a and b are constants that depend on R<R2< R4,
and vh.

(b) Design the circuit so that its input and output have the
relationship specified by the graph shown in Figure
P 6.5-14h.
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Figure P 6.5-14

#P 6.5-15 The circuit shown in Figure P 6.5-15 contains
both an op amp and a potentiometer. This circuit is called an
active potentiometer (Graeme, 1982) because the equiva-
lent resistance, Reg, takes both positive and negative values
as the position of the potentiometer wiper varies. Rp is the
potentiometer resistance. The expressions aRpand (1 —a)Rp
indicate the resistances that appear between potentiometer
terminals y-w and x-w, respectively. Express the equiv-
alent resistance of the active potentiometer source in terms
of R, Rp, and a

°—WV
R

Figure P 6.5-15

*P 6.5-16 The circuit shown in Figure P 6.5-16 contains
both op amps and a potentiometer. This circuit has an
adjustable gain, vo/vj, that takes both positive and negative
values as the position of the potentiometer wiper varies
(Albean, 1997). Rp is the potentiometer resistance. The
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expression a/?p indicates the part of Rp that appears between
potentiometer terminals y-w.

(a) Express the gain in terms of the resistor resistances, Rp
and a.

(b) Set Rx= R3=R* =~ p. Design the circuit so that the gain
varies from -10 V to 10 V as the position of the
potentiometer wiper is varied through its full range.

P 6.5-17 The input to the circuit shown in Figure P 6.5-17
is the voltage source voltage vs. The output is the node
voltage vO. The output is related to the input by the equation
vo = kvswhere k = ~ is called the gain of the circuit. (In

Figure P 6.5-17, a and b are positive real constants, so the
resistance aR and bR are a and b times as large as the
resistances R). Derive an equation that shows how to pick
values of a and b that cause the circuit to have a given gain
k. Use this equation to design the circuit to have a gain k =
8 V/V using R = 20 kH.

Figure P 6.5-17

P 6.5-18 The input to the circuit shown in Figure P 6.5-18 is the
current source current is. The output is the node voltage vG The
output is related to the input by the equation vQ= m/s + b where
m and b are constants. (In Figure P 6.5-18, ¢ and d are positive
real constants, so the resistance cR and dR are ¢ and d times as
large as the resistance R.) Derive an equation that shows how to
pick values of ¢ and d that cause the circuit to have given values
of m and b. Use this equation to design the circuit to have m =
-125 VimAandb = 12V when R = 25 kfl.
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cR dR

Figure P 6.5-18

P 6.5-19 The input to the circuit shown in Figure P 6.4-19 is
the voltage source voltage vs The output is the node voltage vG
The output is related to the input by the equation vc = mvs-l-b
where m and b are constants, (a) Specify values of Rt, and va
that cause the output to be related to the input by the equation
V0 = 4vs+ 7. (b) Determine the values of m and b when
R$ = 20 kO, and va= 2.5V.

20 kQ

10 kQ 30 kQ

Figure P 6.5-19

P 6.5-20 The circuit shown in Figure P 6.5-20 uses a
potentiometer to implement a variable resistor having a resist-
ance R that varies over the range

0 <R< 200kO
The gain ofthis circuit is G = *m Varying the resistance R over
it’s range causes the value of the gain G to vary over the range

Gmn < < Gmax
\S

Determine the minimum and maximum values of the gains,
min and Gnax.

Figure P 6.5-20

P 6.5-21 The input to the circuit shown in Figure P 6.5-2la is
the voltage, vs. The output is the voltage V0. The voltage vb is
used to adjust the relationship between the input and output.
Determine values of R4 and vbthat cause the circuit input and
output to have the relationship specified by the graph shown in
Figure P 6.5-21h.

Answer: V¢ = 1.62VandR4 =62.5 kO

+6

Figure P 6.5-21

Section 6.6 Operational Amplifier Circuits and
Linear Algebraic Equations

P 6.6-1 Design a circuit to implement the equation
2= 4w+= - 3y
4

The circuit should have one output, corresponding to z, and
three inputs, corresponding to w, jc, and y.

P 6.6-2 Design a circuit to implement the equation
0=4w+ jc+10 —(6y -f 22)

The output of the circuit should correspond to z.

Section 6.7 Characteristics of Practical Operational
Amplifiers

P 6.7-1 Consider the inverting amplifier shown in Figure
P 6.7-1 The operational amplifier is a typical OP-07E
(Table 6.7-1). Use the offsets model of the operational
amplifier to calculate the output offset voltage. (Recall that
the input, vin, is set to zero when calculating the output
offset voltage.)



Answer: 0.45 mV

10 kQ 100 kQ

P 6.7-2 Consider the noninverting amplifier shown in
Figure P 6.7-2. The operational amplifier is a typical
LF351 (Table 6.7-1). Use the offsets model of the opera-
tional amplifier to calculate the output offset voltage.
(Recall that the input, vin, is set to zero when calculating
the output offset voltage.)

P 6.7-3 Consider the inverting amplifier shown in Figure
P 6.7-3. Use the finite gain model of the operational amplifier
(Figure 6.7-Ic) to calculate the gain of the inverting ampli-
fier. Show that

o Rm(RO- AR2)
vin (M1 + Ain)(Ro + A2) + ALAIn(1+ A)

RI R2
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P 6.7-4 Consider the inverting amplifier shown in Figure
P 6.7-3. Suppose the operational amplifier is ideal,
1?, = 5kfl, and /72 = 50kfl. The gain of the inverting
amplifier will be

\in

Use the results of Problem P 6.7-3 to find the gain of the
inverting amplifier in each of the following cases:

(a) The operational amplifier is ideal, but 2 percent resistors
are used and R\ = 5.1 kfl and R2 —49 kfl.

(b) The operational amplifier is represented using the finite
gain model with A = 200,000, Rx= 2 Mfl, and RO= 75 fl;
12, =5 kfl and R2=50 kfl.

(c) The operational amplifier is represented using the finite
gain model with A = 200,000, Ri = 2 Mfl, and RO= 75 fl;
Ry= 5.1 kfl and R2=49 kfl.

P 6.7-5 The circuit in Figure P 6.7-5 is called a difference
amplifier and is used for instrumentation circuits. The output
of a measuring element is represented by the common mode
signal vamand the differential signal (vn+ vp). Using an ideal
operational amplifier, show that

w= ~{/n + )

when
RL=RL
Ri Ri
Ri Ra

Section 6.10 How Can We Check ...?

P 6.10-1 Analysis of the circuit in Figure P 6.10-1 shows that
/0= —1 mA and v = 7V. Is this analysis correct?
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Hint: Is KCL satisfied at the output node of the op amp?

6 kQ 4 kft

Figure P 6.10-1

P 6.10-2 Your lab partner measured the output voltage of the
circuit shown in Figure P 6.10-2 to be vQ= 9.6 V. Is this the
correct output voltage for this circuit?

Hint: Ask your lab partner to check the polarity of the voltage
that he or she measured.

4 Kkft 10 kft 12 kft

P 6.10-3 Nodal analysis of the circuit shown in Figure
P 6.10-3 indicates that vc = —12 V. Is this analysis correct?

Hint: Redraw the circuit to identify an inverting amplifier and
a noninverting amplifier.

Figure P 6.10-3

P 6.10-4 Computer analysis of the circuit in Figure P 6.10-4
indicates that the node voltages are va= -5V, \b= 0V,
ve=2V, vd=5V, ve= 2V, vf=2V, and vg= 11V. Is
this analysis correct? Justify your answer. Assume that the
operational amplifier is ideal.

Hint: Verify that the resistor currents indicated by these node
voltages satisfy KCL at nodes b, c, d, and f.

Figure P 6.10-4

P 6.10-5 Computer analysis of the noninverting summing
amplifier shown in Figure P 6.10-5 indicates that the node
voltages are va= 2V, Ww——-025V, vv= -5V, vd=
-2.5V, and ve = -0.25 V.

(@) Is this analysis correct?

(b) Does this analysis verify that the circuit is a noninverting
summing amplifier? Justify your answers. Assume that the
operational amplifier is ideal.

1st Hint: Verify that the resistor currents indicated by these
node voltages satisfy KCL at nodes b and e.

2nd Hint: Compare to Figure 6.5-le to see that Ra= [OKkfl
and Rb = 1kft. Determine Ku K2, and K4 from the resistance
values. Verify that vd= A4(ATiva + ARvc).

Figure P 6.10-5
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SP 6-1 The circuit in Figure SP 6-1 has three inputs: w, vx,
and vy. The circuit has one output, vz. The equation

60 kQ
j—V Arop

20 kQ
AAA
20 kn
—o—WV—1
(T)y 20kQ"

Figure SP 6-1

expresses the output as a function of the inputs. The
coefficients a, b, and ¢ are real constants.

(a) Use PSpice and the principle of superposition to deter-
mine the values of a, b, and c.

(b) Suppose w= 2V, vx=*, vy=Yy and we want the output
to be vz=7. Express Z as a function of X and Y.

Hint: The output is given by v2= awhen w= 1V, vx= 0V,
andw=0V.

Answer: (@) vz=w+4 vx-5 w(b)z=4X- 5v+2

SP 6-2 The input to the circuit in Figure SP 6-2 is vs, and the
output is V0. (a) Use superposition to express vGas a function of
V8 (b) Use the DC Sweep feature of PSpice to plot vo as a
function of vs. (c) Verify that the results of parts (a) and (b)
agree with each other.

25 ki2 80 kQ

Figure SP 6-2

SP 6 3 A circuit with its nodes identified is shown in Figure
SP 6-3. Determine v34, v23, v&0, and i0.
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10 kQ

30 kQ

30 kQ > v0

Figure SP 6-3 Bridge circuit.
SP 6-4 Use PSpice to analyze the VCCS shown in Figure
SP 6-4. Consider two cases:

(a) The operational amplifier is ideal.
(b) The operational amplifier is a typical /aA741 represented
by the offsets and finite gain model.

Figure SP 6-4 A VCCS.
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Design Problems
DP 6-1 Design the operational amplifier circuit in Figure
DP 6-1 so that j

*out ~ M ' *in

Figure DP 6-1

DP 6-2 Figure DP 6-2a shows a circuit that has one input, vi5
and one output, vc. Figure DP 6-2b shows a graph that specifies a
relationship between vo and v,. Design a circuit having input, vj,
and output, vG that have the relationship specified by the graph
in Figure DP 6-2b.

Hint: A constant input is required. Assume that a 5-V source is
available.

*o.V

(a)
Figure DP 6-2
DP 6-3 Design a circuit having input, v and output, vD that are

related by the equations (a) vG= \2vl + 6, (b) vG= 12vj-6,
(c) vo= - 12vi + 6, and (d) Vo= - 12Vj - 6.

Hint: A constant input is required. Assume that a 5-V source is
available.
DP 6-4 Design a circuit having three inputs, vj, v2, v3, and two
outputs, va, vb, that are related by the equation
12 -2 v 2
Wo_ 0 V2 o+ s

Hint: A constant input is required. Assume that a 5-V source is
available.

DP 6-5 A microphone has an unloaded voltage vs = 20 mV, as
shown in Figure DP 6-5a. An op amp is available as shown in
Figure DP 6-5b. It is desired to provide an output voltage of4 V.
Design an inverting circuit and a noninverting circuit and
contrast the input resistance at terminals x-y seen by the
microphone. Which configuration would you recommend to
achieve good performance in spite of changes in the microphone
resistance Rs?

Hint: We plan to connect terminal ato terminal x and terminal b
to terminal y or vice versa.

(a)

(b)

Figure DP 6-5 Microphone and op amp circuit.
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71 INTRODUCTION

This chapter introduces two more circuit elements, the capacitor and the inductor. The constitutive
equations for the devices involve either integration or differentiation. Consequently:

Electric circuits that contain capacitors and/or inductors are represented by differential equations.
Circuits that do not contain capacitors or inductors are represented by algebraic equations. We say
that circuits containing capacitors and/or inductors are dynamic circuits, whereas circuits that do
not contain capacitors or inductors are static circuits.

Circuits that contain capacitors and'or inductors are able to store energy.

Circuits that contain capacitors and/or inductors have memory. The voltages and currents at a
particular time depend not only on other voltages at currents at that same instant of time but also on
previous values of those currents and voltages.

addition, we will see that:

In the absence of unbounded currents or voltages, capacitor voltages and inductor currents are
continuous functions of time.

In a dc circuit, capacitors act like open circuits, and inductors act like short circuits.

A set of series or parallel capacitors can be reduced to an equivalent capacitor. A set of series or

parallel inductors can be reduced to an equivalent inductor. Doing so does not change the element
current or voltage of any other circuit element.
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« Anopamp and a capacitor can be used to make circuits that perform the mathematical operations of
integration or differentiation. Appropriately, these important circuits are called the integrator and
the differentiator.

e The element voltages and currents in a circuit containing capacitors and inductors can be
complicated functions of time. MATLAB is useful for plotting these functions.

7.2 CAPACITORS

FIGURE 7.2 1 A capacitor
connected to a voltage source.

A capacitor is a circuit element that stores energy in an electric field. A capacitor
can be constructed by using two parallel conducting plates separated by distance d
as shown in Figure 7.2-1. Electric charge is stored on the plates, and a uniform
electric field exists between the conducting plates whenever there is a voltage across
the capacitor. The space between the plates is filled with a dielectric material. Some
capacitors use impregnated paper for a dielectric, whereas others use mica sheets,
ceramics, metal films, or just air. A property of the dielectric material, called the
dielectric constant, describes the relationship between the electric field strength and
the capacitor voltage. Capacitors are represented by a parameter called the
capacitance. The capacitance ofa capacitor is proportional to the dielectric constant
and surface area of the plates and is inversely proportional to the distance between
the plates. In other words, the capacitance C of a capacitor is given by

€A
C =

where Gis the dielectric constant, A the area ofthe plates, and d the distance between
plates. The unit of capacitance is coulomb per volt and is called farad (F) in honor of
Michael Faraday.

A capacitor voltage v(t) deposits a charge +q{t) on one plate and a charge -q(t) on the other
plate. We say that the charge q(t) is stored by the capacitor. The charge stored by a capacitor is
proportional to the capacitor voltage, v(t). Thus, we write

q(t) = Cv(t) (7.2-1)

where the constant of proportionality, C, is the capacitance of the capacitor.

Capacitance is a measure ofthe ability of a device to store energy in the form of a separated
charge or an electric field.

In general, the capacitor voltage v(/) varies as a function of time. Consequently, q(t), the charge
stored by the capacitor, also varies as a function of time. The variation of the capacitor charge with
respect to time implies a capacitor current, i(t), given by

0=~ (o0

We differentiate Eq. 7.2-1 to obtain

i{t) = Cjv(t) (7.2-2)
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<O | i0J
) V(o
FIGURE 7.2-3 Voltage waveform in which
FIGURE 7.2-2 Circuit symbols the change in voltage occurs over an increment
of a capacitor. of time, At.

Equation 7.2-2 is the current-voltage relationship of a capacitor. The current and voltage in Eq. 7.7-2
adhere to the passive convention. Figure 7.2-2 shows two alternative symbols to represent capacitors
in circuit diagrams. In both Figure 7.2-2(a) and (b), the capacitor current and voltage adhere to the
passive sign convention and are related by Eq. 7.2-2.

Now consider the waveform shown in Figure 7.2-3, in which the voltage changes from
a constant voltage of zero to another constant voltage of 1 over an increment of time, At. Using
Eq. 7.2-2, we obtain

0 /<0

c
iM)= — 0<t<At
M= A

0 t> At

Thus, we obtain a pulse of height equal to C/A/. As A/ decreases, the current will increase.
Clearly, A/ cannot decline to zero or we would experience an infinite current. An infinite current is an
impossibility because it would require infinite power. Thus, an instantaneous (At = 0) change of
voltage across the capacitor is not possible. In other words, we cannot have a discontinuity in v(f).

The voltage across a capacitor cannot change instantaneously.

Now, let us find the voltage v(t) in terms of the current i(f) by integrating both sides of Eq. 7.2-2.
We obtain

i(r)dz (7.2-3)

This equation says that the capacitor voltage v(/) can be found by integrating the capacitor current from
time -oo0 until time t. To do so requires that we know the value of the capacitor current from time
r = —eo0 until time r = t. Often, we don’t know the value of the current all the way back to r = —oo0.
Instead, we break the integral up into two parts:

vit) = A ji(r)dT +~J  i(r)dx = A jj(x)dx+ v(to) (7.2-4)

This equation says that the capacitor voltage v(f) can be found by integrating the capacitor current
from some convenient time r = to until time r = /, provided that we also know the capacitor voltage
at time /0. Now we are required to know only the capacitor current from time r = to until time r = t.
The time t0is called the initial time, and the capacitor voltage v(f0) is called the initial condition.
Frequently, it is convenient to select /0 = 0 as the initial time.

Capacitors are commercially available in a variety of types and capacitance values. Capacitor
types are described in terms of the dielectric material and the construction technique. Miniature metal
film capacitors are shown in Figure 7.2-4. Miniature hermetically sealed polycarbonate capacitors are
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n . . ) polxcarbon_ate capacitors ranging from 1/zF to
FIGURE 7.2-4 Miniature metal film capacitors ranging from 1 50 Co(jrtesy of Electronlc Concepts Inc

mF to 50 mF. Courtesy of Electronic Concepts Inc.

shown in Figure 7.2-5. Capacitance values typically range from picofarads (pF) to microfarads

Two pieces of insulated wire about an inch long when twisted together will have a capacitance ofabout
1pF. On the other hand, a power supply capacitor about an inch in diameter and a few inches long may
have a capacitance of 0.01 F.

Actual capacitors have some resistance associated with them. Fortunately, it is easy to include
approximate resistive effects in the circuit models. In capacitors, the dielectric material between the
plates is not a perfect insulator and has some small conductivity. This can be represented by a very
high resistance in parallel with the capacitor. Ordinary capacitors can hold a charge for hours, and the
parallel resistance is then hundreds of megaohms. For this reason, the resistance associated with a
capacitor is usually ignored.

Example 7.2-1 Capacitor Current and Voltage

Find the current for a capacitor C = 1mF w'hen the voltage across

L ) A u(v)

the capacitor is represented by the signal shown in Figure 7.2-6. 10

Solution

The voltage (with units of volts) is given by
0 t< 0
10f 0<t <1
20- 10or 1<t< 2 FIGURE 7.2-6 Waveform of the
0 t>2 voltage across a capacitor for Example

7.2-1. The units are volts and seconds.

Then, because i = Cdv/dt, where C = 10 3F, we obtain

fo t<o
102 0<t<1
-10"2 1<t<2
0 t> 2

i(t) =

Therefore, the resulting current is a series of two pulses of
magnitudes 10~2 A and —10-2 A, respectively, as shown in Figure
7.2-7.

F'IGI'RE 7.2-7 Current for Example
7.2-1.
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- Example 7.2-2 Capacitor Current and Voltage j-

Find the voltage v(t) for a capacitor C = 1/2 Fwhen the current is as
shown in Figure 7.2-8 and v(0) = 0.

Solution
First, we write the equation for i(t) as

0 t<o

t 0<t<\ FIGURE 7.2-8 Circuit waveform for Example

1 1<t<?2 7.2-2. The units are in amperes and seconds.

0 2<t
Then, because

(m™T
and C = 1/2, we have
ro r<o
2 | zdr 0<t<1
Jo

jrfior+v(1) 1</<2

,V(2) 2<t
with units of volts. Therefore, for 0 < t < 1, we have
v(f) = <
Forthe period 1 < / < 2, we note that v(1) = 1and, therefore, we have
v(f) —=2{t 1+ 1= (2t- 1)V

The resulting voltage waveform is shown in Figure 7.2-9. The voltage
changes with t2 during the first 1s, changes linearly with t during the  FIGURE 7.2-9 Voltage waveform for Example

period from 1to 2 s, and stays constant equal to 3 V after t —2s.  72%2-

Example 7.2-3 Capacitor Current and Voltage

Figure 7.2-10 shows a circuit together with two plots. The plots represent the current and voltage of the capacitor
in the circuit. Determine the value of the capacitance of the capacitor.
1), mA

50

FIGURE 7.2-10 The circuit and plots

1 2 <
8 /) considered in Example 7.2-3.
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Solution
The current and voltage of the capacitor are related by

v(r) =i~ j(r) dx + v(/0) (7.2-5)
or v(/)-v(/0) = A (T) dx (7.2-6)

Because i(r) and v(/) are represented graphically by plots rather than equations, it is useful to interpret Eq. 7.2-6
using

v(f) —v(/o) = the difference between the values of voltage at times t and to
and ;E i(r) dr — the area under the plot of /(/) versus t for times between t and r0

Pick convenient values t and /0, for example, to = 1s and t — 3s. Then,

v(0 —v(/0) = -1 - (-3) =2V

and [ i(t)dr= [ 0.05dr = (0.05)(3- )=01A s
™% A

Using Eq. 7.2-6 gives

c=005" =005F=50mF

Example 7.2-4 Capacitor Current INTERACTIVE EXAMPLE
and Voltage

Figure 7.2-11 shows a circuit together with two plots. The plots represent the current and voltage of the capacitor
in the circuit. Determine the values of the constants, a and b, used to label the plot of the capacitor current.

v(t), v i(t) o). mA

24

2 5 tim s

2 5 7 t(ms)

FIGURE 7.2-11 The circuit and plots considered in Example 7.2-4.

Solution
The current and voltage of the capacitor are related by

*W = C— v(/) (7.2-7)
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Beacause /(/) and v(t) are represented graphically, by plots rather than equations, it is useful to interpret Eq. 7.2-7 as
the value of i(t) = C x the slope of V(<)

To determine the value of a. pick a time when /(/) = a and the slope of v(t) is easily determined. For example, at
time t = 3ms,

— = e N = -
at iR 993} = 550275505~ 80005

(The notation EV(O'O%) indicates that the derivative 'a-tv(t) is evaluated at time t = 0.003 s.) Using Eq. 7.2-7
gives

a= (5 x 10~6)(8000) = 40 mA
To determine the value of 6, pick t —6 ms;
d .
j-v (0 006} 0 00%4-03 007 = 12x 1055—

Using Eq. 7.2-7 gives
b= (5x 10"6)(12 x 103) = 60mA

Example 7.2-5 Capacitor Current and Voltage

The input to the circuit shown in Figure 7.2-12 is the current c

i(t) = 3.75<T12A for /> 0
+ v(t)

The output is the capacitor voltage

- e -
v(t) = 4 - \.25e~I"2V for t >0 i)
Find the value of the capacitance, C. FIGU.RE. 212
The circuit
. considered in
Solution Example 7.2-5.
The capacitor voltage is related to the capacitor current by
Ko i(r)dz + v(o)
That is,
3.75 —3 125
4 - \.25e
C(-12) +v(0)=—pr—(e~l ~ 0 + v(0)
Equating the coefficients of e~x2 gives
3.125 3.125

125= " * ¢ . ==25F
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EXERCISE 7.2-1 Determine the current i(t) for t > 0 for the circuit of Figure E 1.2-\b when
vs(r) is the voltage shown in Figure E 7.2-la.

iti)
1 \ few 1 J/RM
vMi n ine
f 1F
(a) (b)

FIGURE E 7.2-1 (a) The voltage source voltage, (b) The circuit.
Hint: Determine ic(t) and iR(t) separately, then use KCL.

2t-2 2<t<A4
Answer: v(/) 1-t 4<t<s
0 otherwise

7.3 ENERGY STORAGE IN A CAPACITOR

Consider a capacitor that has been connected to a battery of voltage v. A current flows and a charge is
stored on the plates of the capacitor, as shown in Figure 7.3-1. Eventually, the voltage across the
capacitor is a constant, and the current through the capacitor is zero. The capacitor has stored energy
by virtue of the separation of charges between the capacitor plates. These charges have an electrical
force acting on them.

The forces acting on the charges stored in a capacitor are said to result from an electric field. An
electricfield is defined as the force acting on a unit positive charge in a specified region. Because the
charges have a force acting on them along a direction jc, we recognize that the energy required
originally to separate the charges is now stored by the capacitor in the electric field.

The energy stored in a capacitor is

vidr
- ﬁ-OC
Remember that v and / are both functions of time and could be written as v(/) and /(/). Because
. dv
i=C
dt
we have

' dvfvw 1 ()
WC / vCAd T =C / vdv = -Cv2

@ dt V(-0QJv(—o0) "
Switch
closed B
0-——-- VW FIGURE 7.3-1 A circuit
10V C nyc (@) where the capacitor is charged

and vc = 10V and (b) the switch
isopened att = 0.
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Because the capacitor was uncharged at t = -00, set v(-00) = 0. Therefore,
WCcW-ACv2™) J (7.3-1)

Therefore, as a capacitor is being charged and v(/) is changing, the energy stored, wc, is
changing. Note that we{t) > 0 for all v(/), so the element is said to be passive.
Because q = Cv, we may rewrite Eq. 7.3-1 as

(7.3-2)

The capacitor isa storage element that stores but does not dissipate energy. For example, consider a
100-mF capacitor that has a voltage of 100 V across it. The energy stored is

we = -Cv2 = -(0.1)(100)2 = 500

As long as the capacitor is not connected to any other element, the energy of 500 J remains stored. Now
if we connect the capacitor to the terminals of a resistor, we expect a current to flow until all the energy
is dissipated as heat by the resistor. After all the energy dissipates, the current is zero and the voltage
across the capacitor is zero.

As noted in the previous section, the requirement of conservation of charge implies that the
voltage on a capacitor is continuous. Thus, the voltage and charge on a capacitor cannot change
instantaneously. This statement is summarized by the equation

v(0+) = v(0~)
where the timejust priortot —o is called t = 0~ and the time immediately after t —o0 iscalled t —o0+.
The time between t = 0_ and t = 0+ is infinitely small. Nevertheless, the voltage will not change
abruptly.
To illustrate the continuity of voltage for a capacitor, consider the circuit shown in Figure 7.3-1.
For the circuit shown in Figure 7.3-la, the switch has been closed for a long time and the capacitor

voltage has become vc = 10V. Attime t = 0, we open the switch, as shown in Figure 7.3-1b. Because
the voltage on the capacitor is continuous,

ve(0+) = ve(0~) = 10V

Exampte 7.3-1 Energy Stored by a Capacitor
%

A 10-mF capacitor is charged to 100 V, as shown in the circuit of Figure
7.3-2. Find the energy stored by the capacitor and the voltage of the
capacitor at / = 0+ after the switch is opened.

Solution
The voltage ofthe capacitor isv= 100V at/ = 0~. Because the voltage at

t = O+ cannot change from the voltage at t = O', we have FIGURE 7.3-2 Circuit of
Example 7.3-1 with C = 10mF.

v(0+) = v(0~) = 100V
The energy stored by the capacitor at / = 0+ is

we="Cv2= ~(10%2)(100)2 = 501
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Examptle 7.3-2 Power and Energy for a Capacitor

The voltage across a 5-mF capacitor varies as shown in 100
Figure 7.3-3. Determine and plot the capacitor current,
power, and energy.

. M 50
Solution
The current is determined from ic = C dv/dt and is shown
in Figure 7.3-4a. The power is v(t)i(ty—the product of the 5 /(s)—

current curve (Figure 7.3-4#) and the voltage curve (Figure
7.3-3)—and is shown in Figure 13-4b. The capacitor
receives energy during the first two seconds and then delivers energy for the period 2 < t < 3.

The energy is co= Jpdt and can be found as the area under the p(t) curve. The curve for the energy is
shown in Figure 7.3-4c. Note that the capacitor increasingly stores energy from /= 0sto t —2s, reaching a
maximum energy of 25 J. Then the capacitor delivers a total energy of 18.75 J to the external circuit from /= 25
to t = 3s. Finally, the capacitor holds a constant energy of 6.25 J after t = 3s.

FIGURE 7J-3 The voltage across a capacitor.

(a)
pit)
W)
Delivering energy
(b)
2s Storing energy As. Delivering energy
Wit) .
9 Holding energy constant
6.25
0 -1 |

t(s) e«
FIGURE 7.3-4 The current, power, and

(c)  energy of the capacitor of Example 7.3-2.
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EXERCISE 7.3-1 A 200-mF capacitor has been charged to 100 V. Find the energy stored by the
capacitor. Find the capacitor voltage at / = 0+ if v(0~) = 100 V.

Answer: w(l) = 1Jand v(0+) = 100 V

EXERCISE 7.3-2 A constant current /= 2A flows into a capacitor of \00/i¥ after
a switch is closed at t = 0. The voltage of the capacitor was equal to zero at / = 0~. Find the
energy stored at (a) t = Is and (b) t —100s.

Answer: w(1) = 20 kJ and w( 100) = 200 MJ

7.4 SERIES AND PARALLEL CAPACITORS

First, let us consider the parallel connection of Ncapacitors as showTi in
Figure 7.4-1. We wish to determine the equivalent circuit for the N
parallel capacitors as shown in Figure 7.4-2.

Using KCL, we have

1= H+ I2+ I3+ ' **+ *N FIGURE 7.4-1 Parallel connection of
N capacitors.
Because =T ((jj\t/ P

and v appears across each capacitor, we obtain

_dv A dv A dv dv
1= Clj7+ C2gf+ C3gi7+ =+ + ¢ -g¢
dv
— (Ci 4-C2+ C3 -f---- rCN) —
( ) dt (74-1)  FiGURE 742 Equivalent circuit for N parallel
dv capacitors.
- £ c- odt
For the equivalent circuit shown in Figure 7.4-2, B s
dV + 1/ -
i=Cr dt (7.4-2) o
CN VN
Comparing Egs. 7.4-1 and 7.4-2, it is clear that
Cp_q 02+ G feeeCs — o FIGURE 7.4-3 Series connection of
-1 N capacitors.

Thus, the equivalent capacitance of a set of N parallel capacitors is
simply the sum of the individual capacitances. It must be noted that all
the parallel capacitors will have the same initial condition, v(0).
Now let us determine the equivalent capacitance Csofa set of N
series-connected capacitances, as shown in Figure 7.4-3. The equiv-
alent circuit for the series of capacitors is shown in Figure 7.4-4.
Using KVL for the loop of Figure 7.4-3, we have
FIGURE 7.4-4 Equivalent circuit for vV

V=V, o+ vz 4v3s e e+ N (7:43) geries capacitors.
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Because, in general,
/*'

1
vn (t):gthO idr + vn(to)

where zis common to all capacitors, we obtain

65]_\]/'[0 i3t + V1(20)H el -7 1 \{Q idT + vN(t0)
N 1 ft N

= [ dr+gv.(,0)
n=l  ""o n=I

From Eq. 7.4-3, we note that at t = to,

V(o) = VI(M + V2('0) + —-I\a(fo) =  wn(™)

n=|
Substituting Eq. 7.4-5 into Eq. 7.4-4, we obtain
fi

i dx + v(f0)
Using KVL for the loop of the equivalent circuit of Figure 7.4-4 yields
vzJr | idz +v(0)
Jt0

Comparing Eqs. 7.4-6 and 7.4-7, we find that

For the case of two series capacitors, Eq. 7.4-8 becomes

11 J_
cl~cr{+c2

C,c2
or C.= .

Ci + C2

Example 7.4-1 Parallel and Series Capacitors

Find the equivalent capacitance for the circuit of Figure 7.4-5 when
C, = C2=C3= 2mF, vi(0) = 10V, and v2(0) = v3(0) = 20 V. I Cl

Solution

i . » £
Because C2 and C3 are in parallel, we replace them with Cp, where )

Cp=C2+ C3=4mF

+
C2~- V2

(7.4-4)

(7.4-5)

(7.4-6)

(7.4-7)

(7.4-8)

(7.4-9)

FIGURE 7.4-5 Circuit for Example

The voltage at / = 0 across the equivalent capacitance Cp is equal to the ia-\.
voltage across C2 or C3, which is v2(0) = v3(0) = 20 V. As a result of
replacing C2 and C3 with Cp, we obtain the circuit shown in Figure 7.4-6.
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We now want to replace the series of two capacitors C\ and Cp with one
cquivatent capacitor. Using the relationship of Eq. 7.4-9, we obtain

C,CP (2 x 10-3)(4 x 1Q'3) =8 mp

s C,+Cp (2x 1(T3) + (4 x 10~3) 6 FIGURE 7.4-6
Circuit resulting from
The voltage at / = 0 across Cs is Figure 7.4-5 by replacing

C2and C3with Cp.
v(0) = v,(0) + vp(0)

where vp(0) = 20V, the voltage across the capacitance Cp at t = 0. Therefore, we
obtain

v(0) = 104-20= 30V FIGURE 7.4-7
Equivalent circuit for the
Thus, we obtain the equivalent circuit shown in Figure 7.4-7. circuit of Example 7.4-1.

EXERCISE 7.4-1 Find the equivalent capacitance for the circuit of Figure E 7.4-1

Answer: Ceq = 4 mF
6 mF 12 nF 2 mF Va mF

U3 mF

FIGURE E 7.4-1 FIGURE E 7.4-2

EXERCISE 7.4-2 Determine the equivalent capacitance Ceq for the circuit shown in Figure
E 7.4-2.

Answer: 10/19 mF

7.5 INDUCTORS

An inductor is a circuit element that stores energy in a magnetic field. An inductor can be constructed
by winding a coil of wire around a magnetic core as shown in Figure 7.5-1. Inductors are represented
by a parameter called the inductance. The inductance of an inductor depends on its size, materials, and
method of construction. For example, the inductance of the inductor shown in Figure 7.5-1 is given by

_nN2A
|
where N is the number of turns—that is, the number of times that the wire is wound around the

core A is the cross-sectional area of the core in square meters; / the length of the winding in
meters; and /i is a property of the magnetic core known as the permeability. The unit of inductance
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FIGURE 7.5-1 An inductor connected to a current
source.

FIGURE 7.5-2 Coil with a large inductance. Courtesy of
MuRata Company.

FIGURE 7.5-3 Elements with inductances arranged in
various forms of coils. Courtesy of Dale Electronic
Inc.

FIGURE 7.5-4 Circuit symbol for an inductor.

is called henry (H) in honor of the American physicist Joseph
Henry. Practical inductors have inductances ranging from 1/zH
to 10 H. An example of a coil with a large inductance is shown
in Figure 7.5-2. Inductors are wound in various forms, as shown
in Figure 7.5-3.

Inductance is a measure of the ability of a device to
store energy in the form of a magnetic field.

In Figure 7.5-1, a current source is used to cause a coil
current i(t). We find that the voltage v(0 across the coil is
proportional to the rate of change of the coil current. That is,

(7.5-1)

where the constant of proportionality is L, the inductance of the
inductor.
Integrating both sides of Eq. 7.5-1, we obtain

I 4 1 v{r)dx (7.5-2)

This equation says that the inductor current i(t) can be found by
integrating the inductor voltage from time —oo until time t. To do
so requires that we know the value of the inductor voltage from
time z = —oo until time r = t. Often, we don’t know the value of
the voltage all the way back to r = —o0. Instead, we break the
integral up into two parts:

=23 WNdr+2j' v(NAT=i{t0)+"£ v(r)ir

(7.5-3)

This equation says that the inductor current i(t) can be found by
integrating the inductor voltage from some convenient time r =

until time r = t, provided that we also know the inductor
current at time t0O-Now we are required to know only the inductor
voltage from time r = to until time r —t. The time t0is called the
initial time, and the inductor current i(t0) is called the initial
condition. Frequently, it is convenient to select to = 0 as the
initial time.

Equations 7.5-1 and 7.5-3 describe the current-voltage
relationship of an inductor. The current and voltage in these
equations adhere to the passive convention. The circuit symbol
for an inductor is shown in Figure 7.5-4. The inductor current and
voltage in Figure 7.5-4 adhere to the passive sign convention and
are related by Eqgs. 7.5-1 and 7.5-3.

Consider the voltage of an inductor when the current
changes at t = 0 from zero to a constantly increasing current
and eventually levels off as shown in Figure 7.5-5. Let us
determine the voltage of the inductor. We may describe the



FIGURE 7.5-6 Voltage response for the current

amperes. waveform of Figure 7.5-7 when L=0.1 H

current (in amperes) by
0 t<o
10/
i(t) = 0<t<i
~\
10 t>tx

Let us consider a 0.1-H inductor and find the voltage waveform. Because v = L (di/dt), we have (in volts)

0 t<oO
= 0<t< tx
V(O Tx
0 t>tx

The resulting voltage pulse waveform is shown in Figure 7.5-6. Note that as tx decreases, the
magnitude of the voltage increases. Clearly, we cannot let t\ = 0 because the voltage required would
then become infinite, and we would require infinite power at the terminals of the inductor. Thus,
instantaneous changes in the current through an inductor are not possible.

The current in an inductance cannot change instantaneously.

An ideal inductor is a coil wound with resistanceless wire. Practical inductors include the actual
resistance of the copper wire used in the coil. For this reason, practical inductors are far from ideal
elements and are typically modeled by an ideal inductance in series with a small resistance.

Examptle 7.5-1 Inductor Current and Voltage

Find the voltage across an inductor, L = 0.1 H, when the current in the inductor is
it) —2 0 A
fort> o0 and i(0) = 0.

Solution
The voltage for t <0 is

=LJt="01" (20,e"2) = 2(~2te~2 +e~2l) =2<T2,1 -2 V

The voltage is equal to 2 VV when / = 0, as shown in Figure 1.5-1b. The current waveform is shown in Figure
1.5-la. Note that the current reaches a maximum value, and the voltage is zero at / = 0.5 s.
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Exampte 7.5-2 Inductor Current £ INTERACTIVE EXAMPLE
and Voltage

Figure 7.5-8 shows a circuit together with two plots. The plots represent the current and voltage of the inductor in
the circuit. Determine the value of the inductance of the inductor.

v(t), V i(f) it), A
30 1
1/
2 f 6 t(me
2 J FIGURE 7.5-8 The circuit and plots
2 6 t (ms) considered in Example 7.5-2.
Solution
The current and voltage of the inductor are related by
dr + i(t0) (7.5-4)
or i(t) - i(t0) =1j~ v(r)dz (7.5-5)

Because i(t) and v(t) are represented graphically, by plots rather than equations, it is useful to interpret Eq. 7.5-5
using

i(t) —i(to) —the difference between the values of current at times t and to
and [ v(r)dx the area under the plot of v(/) versus t for times between t and to
Jo

Pick convenient values t and tO, for example, to = 2ms and t = 6 ms. Then,
i(t) - i(to) = 1- (-2) = 3A
r0.006
and I v(r)dr= 30 dr = (30)(0.006 —0.002) = 0.12 V »s
;b

Jto

Using Eq. 7.5-5 gives

3= 4(0.12) = L=0040 , =0.040H = 40mH
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Example 7.5-3 Inductor Current and Voltage j-

The input to the circuit shown in Figure 7.5-9 is the voltage

vf)= 4eV for t>0 J'M
The output is the current
i(t) = -1.2e~0 - 15A for 1> 0 1'()
The initial inductor current is /L(0) = -3.5 A. Determine the values of the inductance,
L, and resistance, R. o)

. FIGURE 7.5-9 The
Solution circuit considered in
Apply KCL at either node to get Example 7.5-3.

l(o
That is
4n-20/ 1 rt 4n-20/ A
,2c-» 15 =V +1i o~ - 35 = — +iR5)r* -'> .35
4 1 o
R~ 51 +5Z- 3'5

Equating coefficients gives
-15=—-3.5 = L=01H

4 1 4 1 4

and -
51“ /?5(0.1) ~ R

EXERCISE 7.5-1 Determine the voltage v(f) for r > 0 for the circuit of Figure E 7.5-16 when
i5(f) is the current shown in Figure E 7.5-1a.

@
FIGURE E 7.5-1 (a) The current source current. (b) The circuit.

Hint: Determine vL(/) and VR(t) separately, then use KVL.

(2t- 2 2<t<as
Answer;v() =/ 7_1 4</<s3s
I o otherwise
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7.6 ENERGY STORAGE IN AN INDUCTOR

The power in an inductor is
(7.6-1)

The energy stored in the inductor is stored in its magnetic field. The energy stored in the inductor
during the interval t0 to t is given by
c* MO
w= [/ pdr=1L/ idi
Jto Ji(h)

Integrating the current between i(t0) and i(t)9we obtain

» = f "(<e) (7-M)

Usually, we select to = —oo for the inductor and then the current /(—o0) = 0. Then we have
1.

w=-Li (7.6-3)

Note that w(f) > 0 for all /(*), so the inductor is a passive element. The inductor does not
generate or dissipate energy but only stores energy. It is important to note that inductors and capacitors
are fundamentally different from other devices considered in earlier chapters in that they have
memory.

Example 7.6-1 Inductor Voltage and Current

Find the current in an inductor, L = 0.1 H, when the voltage t (V)
across the inductor is
0.736
v= 10fe~5 V @
0 0.2 0.4 0.6 /(s)
Assume that the current is zero for t < 0.
) 4
Solution i
The voltage as a function of time is shown in Figure 7.6-la. 2
Note that the voltage reaches a maximum at t —0.2s. The Nemee 1 1 i (b)
current is 0.2 0.4 0.6  t(s)
i=£31 vdx + i(t0) FIGURE 7.6-1 Voltage and current for Example 7.6-1.

Because the voltage is zero for t < 0, the current in the inductor at t = 0 is i(0) = 0. Then we have

_e
= >0/' 10 re~5rdr = 100 (L +5r) =41 _«-*(' +5)) A
Jo 25

The current as a function of time is shown in Figure 7.6-1b.
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Example 7.6-2 Power and Energy for an Inductor J-

Find the power and energy for an inductor of 0.1 H
when the current and voltage are as shown in Figures

7.6-20,6. (a)
Solution
First, we write the expression for the current and the
voltage. The current is (b)
i =0 t<o
=20/ 0</<1
=20 1</
The voltage is expressed as ©
Vv=0t<o
= 20<t <1
=01</ (d)

You can verify the voltage by using v = L(di/dt).
Then the power is

p = vi=40/W
FIGURE 7.6-2 Current, voltage, power, and energy for Example

for 0 < / < 1 and zero for all other time. 7.6-2.
The energy, in joules, is then

w = ~Li2

0.05(20)) 0</< 1
0.05(20)2 1</

and zero for all / < 0.
The power and energy are shown in Figures 1.6-2cM.

Example 7.6-3 Power and Energy for an Inductor

Find the power and the energy stored in a 0.1-H inductor when
i=20/e_ 2 Aand v=27-2'(1 —2/)V fort >0 and i = 0 for
t < 0. (See Example 7.5-1.)

Solution

The power is

p = fv= (20te~2l)[2e~2,(] - 2/)] = 40te-4(l - 2) W t>0 15 f(s)
The energy I then FIGURE 7.6-3 Energy stored in the

"=\u 2= 0.05(20fe~2)2= 20/V 41 />0 inductor of Example 7.6-3.

.Note that is positive for all values of / > 0. The energy stored in the inductor is shown in Figure 7.6-3.
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FIGURE 7.7-1 Series of N inductors.

7.7 SERIES AND PARALLEL INDUCTORS

A series and parallel connection of inductors can be reduced to an equivalent simple inductor.
Consider a series connection of N inductors as shown in Figure 7.7-1. The voltage across the series

connection is

FIGURE 7.7-2 Equivalent inductor Ls
for N series inductors.

+0-
IN|

FIGURE 7.7-3 Connection of N parallel
inductors.

FIGURE 7.7-4 Equivalent inductor Lv
for the connection of N parallel inductors.

vV = Vvt + V2o t vn
rdi , di r di
~ L'dt +L2Jt+ " +LNJt
di
<n=1 Jt

Because the equivalent series inductor Ls, as shown in Figure 7.7-2, is
represented by
L b
sdt
we require that

Is=J21,, (7.7-1)
n=1

Thus, an equivalent inductor for a series of inductors is the sum of the N
inductors.

Now, consider the set of N inductors in parallel, as shown in Figure
7.7-3. The current i is equal to the sum of the currents in the N inductors:
N
*= £ «»

n=1
However, because

in=-j- [ vdT + i,(t0)
Ln Jt0

we may obtain the expression

N \ rt n
(7.7-2)
n=\ nJ" n=1
The equivalent inductor Lp, as shown in Figure 7.7-4, is represented by the equation
i=7“/ vdr +i(t0) (7.7-3)
Lv Jto

When Eqs. 7.7-2 and 7.7-3 are set equal to each other, we have
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and i{to) = * 2 ‘n(to) (7-7-5)

Example 7.7-1 Series and Parallel Inductors

Find the equivalent inductance for the circuit of Figure 7.7-5. All the
inductor currents are zero at t0.

v 5mH <20 mH
Solution 3 mH
First, we find the equivalent inductance for the 5-mH and 20-mH inductors
in parallel. FIGURE 7.7-5 The circuit of Example
From Eq. 7.7-4, we obtain 7.7-1.
_ Lad1
rp~Ti+L2
n =5x20
L +L2 5+20
This equivalent inductor is in series with the 2-mH and 3-mH inductors. Therefore, using Eq. 7.7-1, we obtain
N
Lg=""Ln=2+3+4=9 mH
n=1

EXERCISE 7.7-1 Find the equivalent inductance of the circuit of Figure E 7.7-1.

Answer: — 14mH

3 mH 2 mH
JYYV>_

20 mH <4mH 112mH

FIGURE E 7.7-2

EXERCISE 7.7-2 Find the equivalent inductance of the circuit of Figure E 7.7-2.
Answer: Log = 4 mH

7.8 INITIAL CONDITIONS OF SWITCHED CIRCUITS

In this section, we consider switched circuits. These circuits have the following characteristics:

L All ofthe circuit inputs, that is, the independent voltage source voltages and independent current
source currents, are constant functions of time.
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2. The circuit includes one or more switches that open or close at time /0. We denote the time
immediately before the switch opens or closes as tq and the time immediately after the switch
opens or closes as . Often, we will assume that to = 0.

3. The circuit includes at least one capacitor or inductor.

4. We will assume that the switches in a circuit have been in position for a long time at t = t0, the
switching time. We will say that such a circuit is at steady state immediately before the time of
switching. A circuit that contains only constant sources and is at steady state is called a dc circuit.
All the element currents and voltages in a dc circuit are constant functions of time.

We are particularly interested in the current and voltage ofenergy storage elements after the switch
opens or closes. (Recall from Section 2.9 that open switches act like open circuits and closed switches act
like short circuits.) In Table 7.8-1, we summarize the important characteristics of the behavior of an
inductor and a capacitor. In particular, notice that neither a capacitor voltage nor an inductor current can
change instantaneously. (Recall from Sections 7.2 and 7.5 that such changes would require infinite
power, something that is not physically possible.) However, instantaneous changes to an inductor voltage
or a capacitor current are quite possible.

Suppose that a dc circuit contains an inductor. The inductor current, like every other voltage and
current in the dc circuit, will be a constant function oftime. The inductor voltage is proportional to the
derivative of the inductor current, v= L(di/dt), so the inductor voltage is zero. Consequently, the
inductor acts like a short circuit.

An inductor in a dc circuit behaves as a short circuit.

Similarly, the voltage of a capacitor in a dc circuit will be a constant function of time. The capacitor
current is proportional to the derivative of the capacitor voltage, i = C (dv/dt), so the capacitor current
is zero. Consequently, the capacitor acts like a open circuit.

Table 7.8 Characteristics of Energy Storage Elements
VARIABLE INDUCTORS CAPACITORS
Passive sign convention .
L L i C
~ NN (- 0
+ \ + v
Voltage i di '
v—tdi v= 2301t + v(o)
Current 1 dv
i=- f* vdx -t 1(0
LJo ©) o
Power . di dv
i —Li— —Cv—
dt § at
Ener
¥ w Li2 w= ’é Cv2
An instantaneous change is not permitted for the  Current Voltage
element’s
Will permit an instantaneous change in the Voltage Current
element’s
This element acts as a (see note below) Short circuit to a constant current into it Open circuit to a constant voltage across its
terminals terminals

Note: Assumes that the element is in a circuit with steady-state condition.
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A capacitor in a dc Circuit benaves as an Open circuit.

Our plan to analyze switched circuits has two steps:

1. Analyze the dc circuit that exists before time t0to determine the capacitor voltages and inductor
currents. Indoing this analysis, we will take advantage ofthe fact that capacitors behave as open circuits
and inductors behave as short circuits when they are in dc circuits.

2. Recognize that capacitor voltages and inductor currents cannot change instantaneously, so the
capacitor voltages and inductor currents at time  have the same values that they had at time /0 .

The following examples illustrate this plan.

Example 7.8-1 Initial Conditions in a Switched Circuit
r "N
Consider the circuit Figure 7.8-1. Prior to t = 0, the switch has been closed for a long time. Determine the values
of the capacitor voltage and inductor current immediately after the switch opens at time t = 0.

Solution
1. To find vc(0*) and N1(0- ), we consider the circuit before the switch opens, that is for t < 0. The circuit input,
the voltage source voltage, is constant. Also, before the switch opens, the circuit is at steady state. Because the
circuit is a dc circuit, the capacitor will act like an open circuit, and the inductor will act like a short circuit. In
Figure 7.8-2, we replace the capacitor by an open circuit having voltage vc(0*) and the inductor by a short
circuit having current /1(0*). First, we notice that
«L(0-)=y = 2A

Next, using the voltage divider principle, we see that

2. The capacitor voltage and inductor current cannot change instantaneously, so
ve(0+) = ve(0“) = 6V
and d(0+) = d(<T)=2A

F1GI RE 7.8-1 Circuit with an inductor and a capacitor. The E *:
A\
V*S¥htch is closed for a long time prior to opening att = 0. ricure 7.8-2 Circuit of Figure7.s-1 for | <O. J
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Example 7.8-2 Initial Conditions in a Switched Circuit

Find «i(o+), ve(o+), dvc(0+)/dt. and dii(0+)/dt for the circuit of Figure 7.s-3. We will use dve(0+)/dt to
denote dvc(t)/dt|,=0+.

1H
FIGURE 7.8-3 Circuit for Example 7.8-2. Switch 1 closes

att = 0 and switch 2 opens att —o.

Assume that switch 1has been open and switch 2 has been closed for a long time and steady-state conditions
prevail at / = 0*.

ZA Solution
_e - First, we redraw the circuit for t = 0~ by replacing the inductor with a
short circuit and the capacitor with an open circuit, as shown in Figure
1Q 7.8-4. Then we note that
M it (0-) = 0
and ve(0“) = -2V

Therefore, we have

FIGURE 7.8-4 Circuit of Figure 7.8-3
*(0+) = <1 (0“) = 0

att=o0-~.
and vc(0+) = ve(0“) = =2V
2Q 1Q To find dvc(0+)/dt and dii(0+)/dt, we throw the switch at t = 0 and
1j1+ redraw the circuit of Figure 7.8-3, as shown in Figure 7.8-5. (We did not
. A draw the current source because its switch is open.)
tov (! Because we wish to find dvc(0+)/dt, we recall that
e rdv*
FIGURE 7.8-5 Circuit of Figure 7.8-3 h ~ C dt
att —o” with the switch closed and the dvc(o+) lc(o+)
current source disconnected. Sy dt C

Similarly, because for the inductor
VL = Ldll
we may obtain diL(0+)/dt as
diL{0+) vL(0+)
dt L
Using KVL for the right-hand mesh of Figure 7.8-5, we obtain
vL- vec+ 1jl = o
Therefore, at t = 0+,
vl(0+) = vc(0+) - iL(0+)= -2 - 0= -2V
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Hence, we obtain

dt

Similarly, to find ic, we write KCL at node a to obtain

Consequently, at t = 0+,

iC(0+) = 10 As(°*) - L(0+)=6- 0=6A

Accordingly, n + = ,2Vis

Thus, we found that atthe switching time t = 0, the current in the inductor and thevoltageof the capacitor
remained constant. However, the inductor voltage did change instantaneously from vi(0)= 0 to
vI(0+) = -2 V, and we determined that diL(0+)/dt = -2 A/s. Also, the capacitor current changed instantane-
ously from /c(0~) = 0 to ic(0+) = 6 A, and we found that dvc(0+)/dt = 12 V/s.

79 OPERATIONAL AMPLIFIER CIRCUITS AND LINEAR
DIFFERENTIAL EQUATIONS

This section describes a procedure for designing operational amplifier circuits that implement linear
differential equations such as

20y () + 50y () +4jty(t)+ M t)= M 0 (7.9-1)

The solution of this equation is a function, y(t), that depends both on the function x(t) and on a set of
initial conditions. It is convenient to use the initial conditions:

d2 d
jt2y (™) = °>  jfy{0 = °i and y(*) = 0 (7.9-2)
Having specified these initial conditions, we expect a unique function v{t) to correspond to any given

function x(f). Consequently, we will treat x(t) as the input to the differential equation and y(t) as the
output.

Section 6.6 introduced the notion of diagramming operations as blocks and equations as block
diagrams. Section 6.6 also introduced blocks to represent addition and multiplication by a constant.
Figure 7.9-1 illustrates two additional blocks, representing integration and differentiation.

Suppose that we were somehow to obtain -77 v(f)- cou™ ” en integrate three times to obtain

d2 ) _ . dt
ax] v(0. as illustrated in Figure 7.9-2.

M L X, xy-"-[7j-W 0 dr

@ (b)

VI(jIRF 7<M Block diagram representations of (a) differentiation and (ft) integration.
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FIGURE 7.9-2 The first partial block diagram.
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FIGURE 7.9-3 A block diagram that represents Eq. 7.9-3.

"3 "3
Now we must obtain To do so, solve Eq. 7.9-1 for ~ - v(/) to get

dt* y(t) = 3*(/)  2.5~y(t) +2jty(t) + L.5y(t) (7.9-3)
Next, represent Eq. 7.9-3 by a block diagram such as the diagram shown in Figure 7.9-3. Finally, the
block diagrams in Figures 7.9-2 and 7.9-3 can be combined as shown in Figure 7.9-4 to obtain the
block diagram of Eq. 7.9-1.

Our next task is to implement the block diagram as an operational amplifier circuit. Figure 7.9-5
provides operational amplifier circuits to implement both differentiation and integration. To see how
the integrator works, consider Figure 7.9-6. The nodes of the integrator in Figure 7.9-6 have been
labeled in anticipation of writing node equations. Let vu v2, and v3 denote the node voltages at nodes 1,
2, and 3, respectively.

FIGURE 7.9-4 A block diagram
that represents Eq. 7.9-1.

IMfi
X(t) 0------ Th--mmmmn f-AAAT dt
X (1) dt x(t) T
JT
(a) (b)
xU) X(x) dx

()
FIGURE 7.9-5 Block diagram representations of (a) differentiation and (c) integration. Corresponding operational
amplifier circuits that (b) differentiate and (d) integrate.
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Q + urM © C <C« ©
xU) 0------- W \r-zz “0v(,)
R ot

FIGURE 7.9-6 The integrator.

The input to the integrator is *(/), the node voltage at node 1 Thus, VW = x(t). The output of the
integrator is y(t), the node voltage at node 3. Thus, \8 =y(t). The noninverting input of the ideal
operational amplifier is attached to the reference node, and the inverting input is connected to node 2.

The node voltages at these two nodes must be equal, so v2 = 0.
The voltage across the resistor is related to the node voltages at the resistor nodes by

vr(/) = vi(0 - v2(t) = x(t) - 0= x(t)
The resistor current is calculated, using Ohm’s law, to be

N V) X@)

The value of the current flowing into an input of an ideal operational amplifier is zero, so applying
KCL at node 2 gives

icM = 'rW =
The voltage across the capacitor is related to the node voltages at the capacitor nodes by
ve(0 = v2(/) - v3(f) = 0 - y{t) =-y{l) (7-9-4)

The capacitor voltage is related to the capacitor current by
1 f
vc(0 = 'c(t) dr + vc(0)

Recall that ~(0) = 0. Thus, vc(0) = 0, and

ve«) - i/'icew * -z |"'-T =

Finally, using Eqg. 7.9-4 gives

y(t) = ~~cjo X(r)dT= -Kx(r)dr (7-9-5)

where « RC

Equation 7.9-5 indicates that the integrator does two things. First, the input is integrated.
Second, the integral is multiplied by a negative constant, «. In Figure 7.9-5J, values of- and C have
been selected to make « = —1 Multiplying a function by —1 reflects the graph of the function across
the time axis. This reflection is called an inversion, and the circuit is said to be an inverting circuit.
Consequently, the integrator shown in Figure 7.9-5*/ is sometimes called an inverting integrator. We
will call this circuit an integrator unless we want to call attention to the inversion, in which case, we
will call the circuit an inverting integrator.

Analysis of the summing integrator shown in Figure 7.9-7 is similar to the analysis of the
integrator. The inputs to the summing integrator are x,(f), the node voltage at node 1, and x2(t), the
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M + 7i() -(f) C jeW o

Xi(1) 0— AAAF-----oeeee Ty
iTw  *1 + ®cw -
d) + -

XY o— AAA—
of) ~2 —

FIGURE 7.9-7 The summing integrator.

node voltage at node 2. The output of the integrator is y(t), the node voltage atnode 4.The ideal
operational amplifier causes the voltage at node 3 to be zero. Hence,

Vi(0 =J3d (0, vj(r)=x2(0. v3(/) =0, and v4(t) =y{t)
Using Ohm’s law shows the currents in the resistors to be

vi(t) XxI(o (A \N2(1)  x2(t)
"w ="My =Ny and ,2(,)=" r =" r

The value of the current flowing into an input of an ideal operational amplifier is zero, so applying
KCL at node 3 gives

WO _4W+WO0 _ala+*a

The voltage across the capacitor is related to the node voltages at the capacitor nodes by
Ve(0 = v3(0 - v4(0 = 0 - y(t) = —y{t) (7.9-6)

The capacitor voltage is related to the capacitor current by

1
veM = CJE) 'c(r) dr + vc (0)

Recall that y(0) = 0. Thus, vc (0) = 0, and

veqg = YUy tHn dz- i B 0G P 2 R/ T b kit T M) T
Finally, using Eq. 7.9-6 gives

y()=-1 (j~ +I1*"P)dT=-J0"Mr) + k2x2(T))dr (7.9-7)

where K\ ——— and ki = — .
R\C R2C

Equation 7.9-7 indicates that the summing integrator does four things. First, each input is
multiplied by a separate constant: x\ is multiplied by kj, and x2 is multiplied by k2. Second, the
products are summed. Third, the sum is integrated. Fourth, the integral is multiplied by —1. (Like the
inverting integrator, this circuit inverts its output. It is sometimes called an inverting summing
integrator. Fortunately, we don’t need to use that long name very often.)

The summing amplifier in Figure 7.9-7 accommodates two inputs. To accommodate additional
inputs, we add more input resistors, each connected between an input node and the inverting input
node of the operational amplifier. (The operational amplifier circuit that implements Eq. 7.9-1 will
require a four-input summing integrator.)

We will design an operational amplifier circuit to implement Eq. 7.9-1 by replacing the blocks in
the block diagram of Eqg. 7.9-1 by operational amplifier circuits. This process will be easier if we first
modify the block diagram to accommodate inverting integrators. Figures 7.9-8 and 7.9-9 show
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FIGURE 7.9-8 The block diagram
from Figure 7.9-2, adjusted to
accommodate inverting integrators.

FIGURE 7.9-9 The block
diagram from Figure 7.9-3,
adjusted to accommodate
the consequences of using
inverting integrators.

modified versions of the block diagrams from Figures 7.9-2 and 7.9-3. Replace all the integrators in
Figure 7.9-2 by inverting integrators to get Figure 7.9-8. It’s necessary to set the input equal to

---j3ry(t) instead of d—?)r-y(t) to cause the output to be equal to y(t) instead of —y(t).

dt odt ds 2 d
The block diagram in Figure 7.9-9 produces —drF-KO Yom Ir 7dt and y(t). The

block diagrams in Figures 7.9-8 and 7.9-9 can be combined as shown in Figure 7.9-10 to obtain the

block diagram of Eq. 7.9-1.
A summing integrator can multiply each of its inputs by a separate constant, add the products,

and integrate the sum. The block diagram shown in Figure 7.9-11 emphasizes the blocks that can be
implemented by a single four-input summing integrator.

y(1)

FIGI RE 7.9-10 The block diagram representing Eq. 7.9-1, adjusted to accommodate inverting integrators.

FIGURE 7.9-11 The block diagram representing Eq. 7.9-1. emphasizing the part implemented bg the summing
integrator. r
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R2
t
dtzy()
FIGURE 7.9-12 The summing integrator.
Figure 7.9-12 shows the four-input summing integrator. The signal - 0 is the output ofthis

circuit and is also one of the inputs to the circuit. The resistor R2is connected between this input and
the node connected to the inverting input of the operational amplifier. The summing integrator is
represented by the equation

Y0 5)

Integrating both sides of Eq. 7.9-3 gives

i2
dty(‘) + 1-5y{t) \dx (7.9-9)

For convenience, pick C = 1/xF. Comparing Eqs. 7.9-8 and 7.9-9 gives
R\ = 333 kO, R2= 400kO, R3=500kfi, and R4 667 KkCi

The summing integrator implements most of the block diagram, leaving only four other blocks
to be implemented. Those four blocks are implemented using two inverting integrators and two
inverting amplifiers. The finished circuit is shown in Figure 7.9-13.
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710 USING MATLAB TO PLOT CAPACITOR OR INDUCTOR
VOLTAGE AND CURRENT

Suppose that the current in a 2-F capacitor is

4 t< 2
[+ 2 2<t<6
i) = 7.10-1
= 5021 6</<1 (7.10-1)
-8 t>4

where the units of current are A and the units of time are s. When the initial capacitor voltage is
v(0) = —5V, the capacitor voltage can be calculated using

x)dx —5 (7.10-2)
Equation 7.10-1 indicates that i{t) = 4 A, whereas t < 2s. Using this current in Eq. 7.10-2 gives
1

M 4dx- 5=2t- 5 (7.10-3)

whent < 2s. Next, Eq. 7.10-1 indicates that i(t) = t-f 2 A, whereas 2 < t < 6 s. Using this current in
Eg. 7.10-2 gives

ve 4 (] (t+2)dr+J~4d?J -5 =4I\t +2)dr~I1=" +t-4 (7.10-4)

when 2 < t < 6. Continuing in this way, we calculate

v(0 = (20 —2r)dr + J* (t+ 2)dr + J~ 4dr) -5
1. f t2 (7.10-5)
=-J (20—2t)dx + \\ = —+ |Of —31
when 6 < t < 14s, and
v(i0 = j (/4~8"t B (20 —=2t)dx+J (t+2)dx+J 4dx) -5
(7.10-6)

-8dx + 11 = 67 - 4t

when | > 14s.
Equations 7.10-3 through 7.10-6 can be summarized as
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"N
ffunction = capcur(t) function v =CapVol(t)
if t<2 if t<2
i =4; v=2*t-5;
elseif t<e elseif t<s
i=t + 2; v=20.25*t*t 4t —4;
elseif t<14 elseif t<14
i=20 - 27*t; vz - 5*t*t + 10*t - 31;
else else
i=-18; v= 67 - 4*t;
(@) (b)
t=0:1:20;

for k=1:1:length(t)
i (k) = CapCur (k- 1) ;
v (k) = CapVol (k —1) ;
end
plot (t,i, t,v)
text (12,10, 'v(t) , V%
text (10, -5, "i(t) , A"
title ('"Capacitor Voltage and Current')
xlabel ('time, s

©
FIGURE 7.10-1 MATLABInput files representing (a) the capacitor current and (b) the capacitor voltage; (c) the
MATLAB input file used to plot the capacitor current and voltage.

Equations 7.10-1 and 7.10-7 provide an analytic representation of the capacitor current and voltage.
MATLAB provides a convenient way to obtain graphical representation of these functions. Figures
7A0-\a,b show MATLAB input files that represent the capacitor current and voltage. Notice that the
MATLAB input file representing the current, Figure 7.10-1#, is very similar to Eq. 7.10-1, whereas the
MATLAB input file representing the voltage, Figure 7.10-1b, is very similar to Eq. 7.10-7. Figure
7.10-Ic shows the MATLAB input file used to plot the capacitor current and voltage. Figure 7.10-2
shows the resulting plots of the capacitor current and voltage.

20 Capacitor voltage and current

15

10

-10

-15
0 2 4 6 8 10 12 14 16 18 20 FIGURE 7.10-2 A plot of the voltage

Time, s and current of a capacitor.
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711 HOWCANWECHECK...?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For
example, proposed solutions to design problems must be checked to confirm that all of the
specifications have been satisfied. In addition, computer output must be reviewed to guard against
data-entry errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example,
occasionally just a little time remains at the end of an exam. It is useful to be able to quickly identify

those solutions that need more work.
The following example illustrates techniques useful for checking the solutions of the sort of

problems discussed in this chapter.

Example 7.11-1 How Can We Check the Voltage and
Current of a Capacitor?

A homework solution indicates that the current and voltage of a 2-F capacitor are

r 4 /<2
r+ 2 2</<6

''20-2/ 6<1< 14 (7.11-1)
-8 /> 14
and
2/-5 t<?2
@ 2<t<6®6
4 +'“ 4
V(O = (711-2)
mj+ I0f-21 6<t< 14
67-4/ /> 14

where the units of current are A, the units of voltage are V, and the units of time are s. How can we check this
homework solution to see whether it is correct?

Solution
The capacitor voltage cannot change instantaneously. The capacitor voltage is given by
v() = 2+¢-5 (7.11-3)
when / < 2s and by
vih =24 f-4 (7.11-4)

when2 </ < 6s. Because thecapacitor voltage cannot change instantaneously,Egs. 7.11 -3and 7.11-4 must both
give thesame value for v(2), the capacitor voltage at time t = 2s. SolvingEq. 7.11-3gives

v(2) = 2(2) —5= —1V
Also, solving Eq. 7.11-4 gives

v2) = —+2-4 = -1v
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These values agree, so we haven’t found an error. Next, let’s check v(6), the capacitor voltage at time / = 6 s. The
capacitor voltage is given by

f
v(t) = - -+ 10r—21 (7-11-5)

when 6 <t < 14s. Equations 7.11-4 and 7.11-5 must both give the same value for v(6). Solving Eq. 7.11-4 gives

c2
v(6):T+ 6-4=1UV

whereas solving Eq. 7.11-5 gives

£2
v(6) = —— + 10(6) —21 = 21V

These values don’t agree. That means that v(/) changes instantaneously at t = 6 s, so v(t) cannot be the voltage
across the capacitor. The homework solution is not correct.

7.12 DESIGN EXAMPLE

INTEGRATOR AND SWITCH

This design challenge involves an integrator and a voltage-controlled switch.

An integrator is a circuit that performs the mathematical operation of integration. The
output of an integrator, say vQ@/), is related to the input of the integrator, say vs(f), by the
equation

vO(f2) = K« r vi(0* + vo(/1) (7.12-1)
Jt\

The constant K is called the gain of the integrator.
Integrators have many applications. One application of an integrator is to measure an
interval of time. Suppose vs(t) is a constant voltage, Vs. Then,

Vo) = K-(t2 -t\) -Vt + vO(ty) (7.12-2)

This equation indicates that the output of the integrator at time t2 is a measure of the time
interval t2 —t\-

Switches can be controlled electronically. Figure 7.12-1 illustrates an electronically
controlled SPST switch. The symbol shown in Figure I.\2-\a is sometimes used to
emphasize that a switch is controlled electronically. The node voltage vc(t) is called the
control voltage. Figure 7.12-1/? shows a typical control voltage. This voltage-controlled
switch is closed when vc(t) = vh and open when vc(f) = vl. The switch shown in Figure
7.12-1 is open before time t\. It closes at time txand stays closed until time t2. The switch
opens at time t2 and remains open.

Consider Figure 7.12-2. The voltage vc(/) controls the switch. The integrator converts
the time interval t2—t\ to a voltage that is displayed using the voltmeter. The time
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vito < )

Control i
voltage °CWee---------- fj 2 t(ms)

(b)
FIGURE 7.12-1 The voltage-controlled switch, (a) Switch symbol, (b) Typical control voltage.

FIGURE 7.12-2 Using an integrator to measure an interval of time.

interval to be measured could be as small as 5 ms or as large as 200 ms. The challenge is to
design the integrator. The available components include:

» Standard 2 percent resistors (see Appendix D)
e |-/zF, 0.2-/iF, and 0.1-/iF capacitors

» Operational amplifiers

e +15-Vand —15-V power supplies

e 1-kil. 10-kH, and 100-kil potentiometers

« Voltage-controlled SPST switches

Describe the Situation and the Assumptions

It is convenient to set the integrator output to zero at time t\. The relationship between the
integrator output voltage and the time interval should be simple. Accordingly, let

x_1ov )
vo(<2) = By s (2 ~tY) (7.12-3)
Figure 7.12-2 indicates that V%= 5V. Comparing Egs. 7.12-2 and 7.12-3 yields
N 10V 1
A = — = - -
o 200TTs and. therefore. K = 10 . (7.12-4)
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State the Goal
Design an integrator satisfying both

K=10- and vQt\) =0 (7.12-5)
S

Generate a Plan
Let us use the integrator described in Section 7.9. Adding a switch as shown in Figure 7.12-3
satisfies the condition vO(/i) = 0. The analysis performed in Section 7.9 showed that

<h) =- ~ (7.12-6)

so R and C must be selected to satisfy

P.12-7)
t=tl
FIGURE 7.12-3 An integrator using
Act on the Plan
Any of the available capacitors would work. Select C = 1/aF. Then,
R= —" . =100kn (7.12-8)

The final design is shown in Figure 7.12-4.

Verify the Proposed Solution
The output voltage of the integrator is given by

VM ~ -k 1, V(t)dr+ V()= (100 10j)(10-*) 5dr = - 50 (' = 'm>

where the units of voltage are V and the units of time are s. The interval of time can be
calculated from the output voltage, using

4
For example, an output voltage of -4 V indicates a time interval of — s = 80 ms.
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FIGURE 7.12-4 Using an operational amplifier integrator to measure an interval of time.

713 SUMMARY
O Table 7.13-1 summarizes the element equations for capaci-

tors and inductors. (Notice that the voltage and current
referred to in these equations adhere to the passive conven-
tion.) Unlike the circuit elements we encountered in previ-
ous chapters, the element equations for capacitors and
inductors involve derivatives and integrals.

Circuits that contain capacitors and/or inductors are able to
store energy. The energy stored in the electric field of a
capacitor is equal to\ Cv2(/), where v(t) is the voltage across
the capacitor. The energy' stored in the magnetic field of a
inductor is equal to \Li2(t), where i(t) is the current in the
inductor.

O Circuits that contain capacitors and/or inductors have mem-

ory. The voltages and currents in that circuit at a particular
time depend not only on other voltages and currents at that
same instant of time but also on previous values of those
currents and voltages. For example, the voltage across a
capacitor at time depends on the voltage across that
capacitor at an earlier time t0 and on the value of the
capacitor current between t0 and tx

A set of series or parallel capacitors can be reduced to an
equivalent capacitor. A set of series or parallel inductors can
readily be reduced to an equivalent inductor. Table 7.13-2
summarizes the equations required to do so.

Element Equations for Capacitors and Inductors

CAPACITOR

+ V) -
°rz— (- -
H) Cc

i (£)=CjV(t)

V0 i(ryr+ v(/o)

INDUCTOR

1(t)==j"V(MdT + if©®)

V() = L~i(t)
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Table M 3 7 Parallel and Series Capacitors and Inductors

SERIES OR EQUIVALENT
PARALLEL CIRCUIT CIRCUIT EQUATION
1
L 1
L +L2
Lg—L\ + 12
+ V()
+ V) -
00— ---—-- 1( ________ 0 CQ =Ci+ Ci
Hi) Ceg
Ci
V() of Vi) -

O I [¢]
i(t) cl i Cq @C’+5

In the absence of unbounded currents, the voltage across a
capacitor cannot change instantaneously. Similarly, in the
absence of unbounded voltages, the current in an inductor
cannot change instantaneously. In contrast, the current in a
capacitor and voltage across an inductor are both able to
change instantaneously.

We sometimes consider circuits that contain capacitors and
inductors and have only constant inputs. (The voltages of the
independent voltage sources and currents of the independent
current sources are all constant.) When such a circuit is at
steady state, all the currents and voltages in that circuit will
be constant. In particular, the voltage across any capacitor
will be constant. The current in that capacitor will be zero
due to the derivative in the equation for the capacitor

PROBLEMS

Section 7.2 Capacitors

P 7.2-1 A 15/xF capacitor has a voltage of 5 V across it at
t = 0. Ifa constant current of 25 mA flows through the capacitor,
how long will it take for the capacitor to charge up to 150 fiC?

Answer: t = 3ms

P 7.2-2 The voltage, v(r), across a capacitor and current, /(/),
in that capacitor adhere to the passive convention. Determine
the current, i(f), when the capacitance is C = 0.125 F, and the
voltage is v(/) = 12cos(21+ 30°) V.

current. Similarly, the current through any inductor will be
constant and the voltage across any inductor will be zero.
Consequently, the capacitors will act like open circuits and
the inductors will act like short circuits. Notice that this
situation occurs only when all of the inputs to the circuit are
constant.

An op amp and a capacitor can be used to make circuits that
perform the mathematical operations of integration and
differentiation. Appropriately, these important circuits are
called the integrator and the differentiator.

The element voltages and currents in a circuit containing
capacitors and inductors can be complicated functions of
time. MATLAB is useful for plotting these functions.

Hine:™ ACOS (cot +6) = —ASIN (ot + 0) - (cor + 0)

= —Aco sin {cot -f 0)

= Acocos [eot+ (ft+ ~)~"
Answer: i{t) = 3cos(2f -+ 120°) A
P 7.2-3 The voltage, v(/), across a capacitor and current, /(/), in
that capacitor adhere to the passive convention. Determine the

capacitance when the voltage is v(/) = 12 cos(500/—45°) V
and the current is /'(/) = 3 cos(500f + 45°) mA.



Answer: C = 0.5 /xF
P 7.2-4 Determine v(/) for the circuit shown in Figure
P 7.2-4a(t) when the igt) is as shown in Figure P 7.2-46
and vo(0") = -1 mV.

@ (b)

Figure P 7.2-4 {a) Circuit and (b) waveform of current source.

P 7.2-5 The voltage, v(/), and current, /(/), of a 1-F capacitor
adhere to the passive convention. Also, v(0) = 0V and
i(0) = 0A. (a) Determine v(t) when i(t) = x(t), where x(t)
is shown in Figure P 7.2-5 and i(t) has units of A. (b)
Determine /(/) when v(/) = x(t), where x(/) is shown in Figure
P 7.2-5 and v(t) has units of V.

Hint:x(t) = 41—4when 1< t < 2,and*(/) = —41+ 12when
2<t<3

Figure P 7.2-5

P 7.2-6 The voltage, v(o, and current, i(f), of a 0.5-F capaci-
tor adhere to the passive convention. Also, v(0) = 0V and
i(0) = 0 A (a) Determine v(/) when i(t) = jr(r), where jc(f) is
shown in Figure P 7.2-6 and i(t) has units of A. (b) Determine i
(t)ywhen v(t) = x(t), where x{t) is shown in Figure P 7.2-6 and
v(t) has units of V.

Hint:x(t) = 0.2/ —0.4 when2 < / < 6.

Problems - ( 295

Figure P 7.2-6

P 7.2-7 The voltage across a 40-/xF capacitor is 25 V at
t0 = 0. If the current through the capacitor as a function of
time is given by /(/) = 6e~& mA fort < 0, find v(/) for t > 0.

Answer: v(t) = 50 —25e~6lV

P 7.2-8 Find i for the circuit of Figure P 7.2-8 if v=
51 —2e~2) V.

+
VANONF <

Figure P 7.2-8

P 7.2-9 Determine /) for / > O for the circuit of Figure
P 12-9a when is(t) is the current shown in Figure P 7.2-96 and
v(0) = 1v.

Figure P 7.2-9

P 7.2-10 Determine v-() for / > 0 for the circuit of Figure
P 7.2-10a when v(0) = -4 V and igt) is the current shown in
Figure P 7.2-10b.
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Figure P 7.2-12

P 7.2-13 The capacitor voltage in the circuit shown in Figure
P 7.2-13 is given by

v(/) = 24+ 56e~5V for/>0
Determine i(t) for / > 0.

20 Q 400 Q
-AAAr -AW -
»@)j2m F  100£27[iW 112 vV

Figure P 7.2-10
Figure P 7.2-13

P 7.2-11 Determine /(() for / > 0 for the circuit of FigureP 7.2-14 The capacitor voltage in the circuit shown in Figure
P 7.2-1la when vs(/) is the voltage shown in Figure P 7.2-116. P 7.2-14 is given by
W v(r)= 10- 8e-5'V forr>0
Determine i(t) for t > 0.
it
BAAAr
12Q

VAY) |

20 mF 4= v(t)

Figure P 7.2-14

P 7.2-15 Determine the voltage v(r) for t > 0 for the circuit of
Figure P 7.2-156 when is(t) is the current shown in Figure
P 7.2- 15a. The capacitor voltage attimer = 0isv(0) = —12V.

(b)

Figure P 7.2-11

P 7.2-12 The capacitor voltage in the circuit shown in Figure
P 7.2-12 is given by

v(/) =12- 10e“2/V for />0

Determine l(t) for/ >0 Figure P 7.2-15 (a) The voltage source voltage. (b) The circuit.



P 7.2-16 The input to the circuit shown in Figure P 7.2-16 is
the current
/() = 3.75e~12tA forf> 0

The output is the capacitor voltage
v(f) = 4 - 1.25e~12V for/ >0

Find the value of the capacitance, C.

C

Figure P 7.2-16
P 7.2-17 The input to the circuit shown in Figure P 7.2-17 is
the current

i(t) = 3e~&A fort>0

The initial capacitor voltage is vc(0) = -2 V. Determine the
current source voltage, v(t), fort > o.

+ w0 -

Figure P 7.2-17

P 7.2-18 The input to the circuit shown in Figure P 7.2-18 is
the current
(/) = 3e~5 A fort>0
The output is the voltage
v(/) = 9.6e~& + 04V fort>0

The initial capacitor voltage is vc (0) = —2 V. Determine the
values of the capacitance, C, and resistance, R.

+ ()

Figure P 7.2-18

Problems---— ( 297

P 7.2-19 The input to the circuit shown in Figure P 7.2-19 is
the voltage

v(/) = 8 + 5<r,0/V for/>0

Determine the current, /(/) for t > 0.

J HD

Figure P 7.2-19

P 7.2-20 The input to the circuit shown in Figure P 7.2-20 is

the voltage:
v(f) =3 \e~2A for/>0

The output is the current, i(f) = 0.3 - 1.6e-2/V for/ >0
Determine the values of the resistance and capacitance.

Answers: R = 10flandC = 0.25 F

()

ut)
Figure P 7.2-20
P 7.2-21 Consider the capacitor shown in Figure P 7.2-21.
The current and voltage are given by

5 0</<05
2 05<r< 15

0 r> 15

2t4-86 0<r<o05

at+b 05<t<ib
c t> 15

where a, b, and ¢ are real constants. (The current is given in
Amps, the voltage in Volts, and the time in seconds.)
Determine the values of a, b, and c.

Answers: a—8V/s, b=56V,andc = 176V
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V(D) C=025F

Figure » 7.3-3
Figure » 7.2-21

P 7.3-4 The current through a 2-/iF capacitor is
P 7.2-22 At time / = 0, the voltage across the capacitor 50 cos( 10/ + 7U/6) ii A for all time. The average voltage across
shown in Figure P 7.2-22 is v(0) = —20 V. Determine the  the capacitor is zero. What is the maximum value of the energy
values of the capacitor voltage at times 1 ms, 3 ms, and 7 ms.  stored in the capacitor? What is the first nonnegative value of/
at which the maximum energy is stored?

P 7.3-5 A capacitor is used in the electronic flash unit of a

camera. A small battery with a constant voltage of 6 V is used

to charge a capacitor with a constant current of 10/i A. How

long does it take to charge the capacitor when C = 10/xF?
25nF i M/ What is the stored energy?

P 7.3-6 The initial capacitor voltage of the circuit shown in
Figure P 7.3-6 is vc(0~) = 3 V. Determine (a) the voltage v(/)
and (b) the energy stored in the capacitor at / = 0.2 sand / =
0.8 s when

35A 0</< 1
KoK

Section 7.3 Energy Storage in a Capacitor 0 /> 1s

P 7.3-1 The current, /, through a capacitor is shown in Figure  Answers:
P 7.3-1. When v(0) = 0 and C = 0.5 F, determine and plot @ ISA'V, 0</< 1

V(). 12(), and w(t) for 0s < / < 6s. (b) w(0.2) = 6.65J and w(0.8) = 2.68 kJ

Figure » 7.3-6

Figure P 7.3-1
Section 7.4 Series and Parallel Capacitors

P 7.4-1 Find the current /(/) for the circuit of Figure P 7.4-1.
Answer: i(t) = —1.2 sin 100/mA

iit)

P 7.3-2 In a pulse power circuit, the voltage of a 10-juF
capacitor is zero for / < 0 and

v= 51 -e~4W) V />0

Determine the capacitor current and the energy stored in the H 1
capacitor at / = Oms and / = 10 ms. { 3AF_

P 7.3-3 If v(/) is given by the waveform shown in Figure 6 cos 100fVQT) ) - 20iF =-4llF

P 7.3-3, sketch the capacitor current for —1s < / < 2's. Sketch L
the power and the energy for the capacitor over the same time
interval when C = 1mF. Figure » 7.4-1



p 7.4-2 Find the current i(t) for the circuit of Figure P 7.4-2.

Answer: i(t) = —1.5e~250' mA

=H J— [ J— —
TWE T
5+ 30V Cl j AE 5-44

f
Figure P 7.4-2

P 7.4-3 The circuit of Figure P 7.4-3 contains five identical
capacitors. Find the value of the capacitance C.

Answer: C = 10nY

i(t) = 25 cos 2501 mMA

14 sin 250r V

Figure P 7.4-3

P 7.4-4 The circuit shown in Figure P 7.4-4 contains seven
capacitors, each having capacitance C. The source voltage is
given by

v(/) = 4cos(3f)V
Find the current i(t) when C = 1F.
iit)

Figure P 7.4-4

P 7.4-5 Determine the value of the capacitance C in the
circuit shown in Figure P 7.4-5, given that Ceq= 8 F.

Answer: C= 20F

Figure P 7.4-5
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p 7.4-s5 Determine the value of the equivalent capacitance,
Ceq, in the circuit shown in Figure P 7.4-6.

Answer: Ceq= 10F

Figure P 7.4-6

P 7.4-7 The circuit shown in Figure P 7.4-7 consists of nine
capacitors having equal capacitance, C. Determine the value
of the capacitance C, given that Ceq= 50 mF.

Answer: C = 90 